

ELPH workshop @ Tohoku Univ.

Doubly charmed tetraquark T_{cc}^+ from lattice QCD

Yan Lyu

Nov. 8, 2023

Based on: YL, S. Aoki, T. Doi, T. Hatsuda, Y. Ikeda, and J. Meng, PRL 131, 161901 (2023)

Fig. courtesy of K. Murano

Conventional hadrons

Y. LYU Doubly charmed tetraquark Tcc from LQCD

Exotic hadrons

	Volume 8, number	3 PHYSICS LETTERS	1 February 1964
		A SCHEMATIC MODEL OF BARYONS AND MESONS *	
	1	M.GELL-MANN California Institute of Technology, Pasadena, California	
		Received 4 January 1964	

"Baryons can now be constructed from quarks by using the combinations (qqq), ($qqqq\overline{q}$), etc., while mesons are made out of ($q\overline{q}$), ($qq\overline{q}\overline{q}$), etc."

pentaquark				te	traquar	k				
Hidden	-charn	n exot	ic can	didate	S	Р Р	c (4380) c (4440)) 1 1) 1	$P_c(4312)$ $P_c(4440)$ $P_c(4457)$	
• 2003					• 2013		• 2015		• 2020	
χ _{c1} (3872)	$\psi(4360) \\ \psi(4660)$	$Z_c(4430)$ X(4050) X(4250)	$\chi_{c1}(4140)$	χ _{c1} (4274)	Z _c (3900)	$\begin{array}{l} X(4020) \\ Z_{c}(4200) \\ R_{c0}(4240) \end{array}$	X(4055)	$\begin{array}{l} \chi_{c0} \left(4700 \right) \\ \chi_{c0} \left(4500 \right) \end{array}$	X(6900)	$Z_{cs} (3985) Z_{cs} (4220) \chi_{c1} (4685) X (4630)$

 $QQ\bar{q}\bar{q}'$ extotics

- > Intriguing aspects on $QQ\overline{q}\overline{q'}$
 - Open flavor, once observed its minimal quark content contains four quarks
 - Likely to be bound in the limit of $m_Q \rightarrow \infty$ A. Manohar and M. Wise, Nucl. Phys. B 339, 17 (1993) $bb\overline{q}\overline{q'}(\sqrt{)}$ $cc\overline{q}\overline{q'}(?)$ $ss\overline{q}\overline{q'}(\times)$
- A long history of theoretical prediction on $cc\overline{u}\overline{d}$ $(IJ^P = 01^+)$

First doubly charmed tetraquark T_{cc}^+

> 2022, LHCb discovered T_{cc}^+ in the $D^0 D^0 \pi^+$ spectrum LHCb Coll., Nature Phys. 18, 751 (2022); Nature Comm. 13, 3351 (2022)

Y. LYU Doubly charmed tetraquark Tcc from LQCD

 T_{cc}^+ from first-principle lattice QCD

► Limited to heavy quark masses ($m_{\pi} \ge 280 \text{ MeV}$)

Purpose of this talk

- 1. present the latest lattice results with (nearly) physical quark masses
- 2. directly compare theoretical and experimental $DD\pi$ mass spectrum

HAL QCD method

Nambu-Bethe-Salpeter (NBS) amplitude

$$\psi^{k}(\boldsymbol{r})e^{-Et} = \langle 0|\hat{D}^{*}(\boldsymbol{r},t)\hat{D}(\boldsymbol{0},t)|D^{*}(\boldsymbol{k})D(-\boldsymbol{k});E\rangle$$

- Asymptotic region: $\psi^k(r) \simeq A \frac{\sin(kr l\pi/2 + \delta(k))}{kr}$
- Interacting region: define potential

$$(
abla^2 + k^2)\psi^k(\boldsymbol{r}) = 2\mu \int d\boldsymbol{r}' \boldsymbol{U}(\boldsymbol{r}, \boldsymbol{r}')\psi^k(\boldsymbol{r}')$$

$$\left(\frac{1}{8\mu}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} + \frac{\nabla^2}{2\mu}\right)R(\boldsymbol{r}, t) = \int d\boldsymbol{r}' \boldsymbol{U}(\boldsymbol{r}, \boldsymbol{r}')R(\boldsymbol{r}', t)$$

• Derivative expansion: $U(\mathbf{r}, \mathbf{r}') = \sum V_i(\mathbf{r}) \nabla^i \delta(\mathbf{r} - \mathbf{r}')$

$$V(r) = R(\boldsymbol{r}, t)^{-1} \left(\frac{1}{8\mu} \frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} + \frac{\nabla^2}{2\mu} \right) R(\boldsymbol{r}, t)$$

N. Ishii, S. Aoki and T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007)
 N. Ishii, *et al.* [HAL QCD Coll.], Phys. Lett. B 712, 437 (2012)

Asymptotic region

Interacting

region

Lattice setup

\succ (2+1)-flavor configuration

- Iwasaki gauge action
- O(a)-improved Wilson quark action for *uds* quark
- Relativistic heavy quark action for *c* quark
- K.-I. Ishikawa et al. [PACS Coll.], Proc. Sci., LATTICE2015 075 (2016)

Y. Namekawa et al. [PACS Coll.], Proc. Sci., LATTICE2016 125 (2017)

-	-

$L^3 \times T$	<i>a</i> [fm]	<i>La</i> [fm]	m_{π} [MeV]	m_K [MeV]
$96^3 \times 96$	0.0846	8.1	146	525

Fugaku supercomputer (440 PFlops)

Energy levels					
Natu π ⁰ (134.98) D ⁰ (1864.84) D ^{*0} (2006.85)	re π ⁺ (139.57) D ⁺ (1869.66) D ^{*+} (2010.26)	Lattice $\pi(146.4)$ D(1878.2) $D^*(2018.1)$	[MeV]		
4017.1	$D^{*+}D^{*0}$	<i>D*D*</i>	4036.2		
		$DD\pi(L = 8.1 \text{fm})$	3974.3		
3876.5 3875.1 3869.5	$ D^{*0}D^{+} \\ D^{*+}D^{0} \\ D^{+}D^{0}\pi^{0} $	$DD\pi(L \to \infty)$ D^*D	3902.8 3896.3		
3869.3	$D^0 D^0 \pi^+$				

• The lowest energy level of $DD\pi$ (D^*D^*) is around 78 (140) MeV above on the lattice

D^*D interaction

> D^*D potential in the $(I, J^P) = (0, 1^+)$ channel

- Short range: antidiquark-diquark $\left[\bar{u}\bar{d}\right]_{3_c,I=J=0} [cc]_{\overline{3}_c,J=1}$ R. Jaffe and F. Wilczek, Phys. Rev. Lett. 91 232003 (2003)
- Long range: attraction from pion-exchange interaction

Long-range potential

One-pion exchange

S. Ohkoda *et. al.*, Phys. Rev. D 86, 034019 (2012) N. Li, *et. al.*, Phys. Rev. D 88, 114008 (2013)

$$V(r) = -\alpha \frac{e^{-\mu r}}{r}, \quad \mu = m_{\pi} \text{ or } \sqrt{(m_{D^*} - m_D)^2 - m_{\pi}^2}$$

- Fail to describe long-range potential (why?)
- Two-pion exchange

Fit

Fit A: purely phenomenological fit ($\chi^2/d.o.f. = 1.01$)

$$V_{\rm fit}(r) = \sum_{i=1,\cdots,4} a_i e^{-(r/b_i)^2}$$

> Fit B: TPE-motivated fit (χ^2 /d. o. f. = 0.96)

$$V_{\rm fit}(r;m_{\pi}) = \sum_{i=1,2} a_i e^{-(r/b_i)^2} + a_3 (1 - e^{-(r/b_3)^2})^2 \frac{e^{-2m_{\pi}r}}{r^2}$$

Scattering properties

Scattering parameters and pole singularities

m_{π} (MeV)	146.4	
$1/a_0 ~({\rm fm}^{-1})$	$0.05(5)(^{+2}_{-2})$	$\bigwedge k$ plane
$r_{\rm eff}$ (fm)	$1.12(3)(^{+3}_{-8})$	
$k = i\kappa_{\text{pole}} \kappa_{\text{pole}} (\text{MeV})$	$-8(8)(^{+3}_{-5})$	vietus1
E_{pole} (keV)	$-59(^{+53}_{-99})(^{+2}_{-67})$	virtual

• T_{cc}^+ appears as a virtual state at $m_{\pi} = 146.4$ MeV

Comparison

▶ 1/a₀

Ikeda *et al.*[HALQCD Coll.], Phys. Lett. B 729, 85 (2014) Chen et al., Phys. Lett. B 833, 137391 (2022) Padmanath and Prelovsek, Phys. Rev. Lett. 129, 032002 (2022)

• As m_{π} decreases, LQCD results approach to the experimental data

Extrapolate to physical point based on TPE

Extrapolation

• Extrapolate TPE interaction to physical point

$$V_{\rm fit}(r; m_{\pi} = 146 \rightarrow 135 \text{ MeV})$$

- Adopt physical values for $m_{D^{*+}}$ and $m_{D^{0}}$
- Do NOT consider isospin breaking nor opening of $DD\pi$ channel
- Scattering parameters and pole singularities

$\overline{m_{\pi}}$ (MeV)	146.4	135.0	A
$1/a_0 ({\rm fm}^{-1})$	$0.05(5)(^{+2}_{-2})$	-0.03(4)	hound k plane
$r_{\rm eff}$ (fm)	$1.12(3)(^{+3}_{-8})$	1.12(3)	
$k = i\kappa_{\text{pole}}\kappa_{\text{pole}}$ (MeV)	$-8(8)(^{+3}_{-5})$	+5(8)	virtual
$E_{\rm pole}$ (keV)	$-59(^{+53}_{-99})(^{+2}_{-67})$	$-45(^{+41}_{-78})$	virtual

• $m_{\pi} = 146 \rightarrow 135$ MeV, T_{cc}^+ evolves from a virtual state into

a bound state

Extrapolation to physical point based on a_0

Extrapolation

• A linear fit to four $1/a_0$ s from different m_{π}

$$1/a_0(m_\pi) = c + dm_\pi^2$$

• Four data from different calculations and posses different systematics

• $1/a_0$ from two extrapolations are consistent with each other

 $> 1/a_0$

Construction of $D^0 D^0 \pi^+$ spetrum

Production amplitude of D*+D⁰ from a source function P

$$U(M,p) = P + \int \frac{d^{3}q}{(2\pi)^{3}} T(M,p,q) G(M,q) P$$

PHYSICAL REVIEW D 105, 014024 (2022)

Coupled-channel approach to T_{cc}^+ including three-body effects

Meng-Lin Du⁰,^{1,*} Vadim Baru⁰,^{2,3,†} Xiang-Kun Dong⁰,^{4,5,‡} Arseniy Filin⁰,² Feng-Kun Guo⁰,^{4,5,§} Christoph Hanhart⁰.^{6,||} Alexev Nefediev⁰.^{7,8,¶} Juan Nieves⁰.^{1,**} and Oian Wang⁰,^{10,11,††}

- For simplicity, consider a pointlike source (constant in *p*-space, $P = \mathcal{N}$)
- Only *S*-wave production at low energies

- Adopt experimental values for m_{D^{*+},D^0,π^+} and $\Gamma_{D^{*+}}$ in the kinematics to keep the same phase space with the experiment
- > Three-body mass spectrum for $D^0 D^0 \pi^+$

$$\mathcal{M}(U \to D^0 D^0 \pi^+) = U(M, p) G(M, p) q_\pi + U(M, \bar{p}) G(M, \bar{p}) \bar{q}_\pi$$
$$\frac{d \mathrm{Br}}{dM} = \mathcal{N}' \int_0^{p_{\mathrm{max}}} p dp \int_{\bar{p}_{\mathrm{min}}}^{\bar{p}_{\mathrm{max}}} \bar{p} d\bar{p} |\mathcal{M}(U \to D^0 D^0 \pi^+)|^2$$

 A known energy resolution function needs to considered for comparison w/ exp. data LHCb Coll., Nature Comm. 13, 3351 (2022) \succ Results at different m_{π}

- A peak around $D^{*+}D^0$ threshold
- $m_{\pi} = 146 \text{ MeV} \rightarrow 135 \text{ MeV}$, peak position shifts to the left, better description to LHCb data

Summary & Outlook

Summary: present the scattering properties of D^*D system from LQCD with nearly physical m_{π} =146 MeV

- Attractive potential with two-pion exchange interaction at long distances
- The potential leads to a near-threshold virtual state
- Extrapolate the potential to physical point ($m_{\pi} = 146 \rightarrow 135 \text{ MeV}$) $\uparrow k \text{ plane}$
 - ✓ virtual state→bound state

 \checkmark better description to the *DD* π spectrum of LHCb experiment

Outlook

- Physical-point simulation
 - ✓ opening of three-body channel
 - ✓ isospin breaking effect (i.e., coupled channel calculation)
- Study one-pion exchange interaction and associated left-hand-cut from LQCD

bound

virtual

