Analysis of T_{cc} and T_{bb} based on the hadronic molecular model and their spin structures

Manato Sakai

in collaboration with Yasuhiro Yamaguchi

Nagoya University

November 8, 2023

LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13

(2022) 3351

三日 のへの

イロト イヨト イヨト イヨト

LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13

(2022) 3351

• tetraquark state $cc\bar{u}d$ \rightarrow genuine exotic!!

• Isoscalar
$$J^P = 1^+$$

1.5

A D A A B A A B A A B

LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13

(2022) 3351

- tetraquark state $cc\bar{u}d$ \rightarrow genuine exotic!!
- Isoscalar $J^P = 1^+$
- mass difference from the $D^{*+}D^0$ threshold
 - Breit-Wigner $\delta m_{\rm BW} = -273 \pm 61 \, {\rm keV}/c^2$
 - ▶ pole $\delta m_{\text{pole}} = -360 \pm 40 \, \text{keV}/c^2$

< ロ > < 同 > < 回 > < 回 > < 回 > <

ELE NOR

LHCb, Nature Phys. 18 (2022) 751-754, Nature Commun. 13

(2022) 3351

- tetraquark state ccūd̄
 → genuine exotic!!
- Isoscalar $J^P = 1^+$
- mass difference from the $D^{*+}D^0$ threshold
 - Breit-Wigner $\delta m_{\rm BW} = -273 \pm 61 \, {\rm keV}/c^2$
 - ▶ pole $\delta m_{\text{pole}} = -360 \pm 40 \, \text{keV}/c^2$

• T_{cc} exists slightly below the $D^{*+}D^0$ threshold. $\Rightarrow T_{cc}$ can be considered as a hadronic molecule like a deuteron!!

Theoretical researches on T_{cc}

- non-relativistic quark model
 - J.I.Ballot and J.M.Richard, Phys.Lett. B 123, 449 (1983)
 - S.Zouzou et al, Z. Phys. C 30,457 (1986)
 - Q. Meng et al, Phys. Lett. B 814, 136095 (2019)
- Hadronic molecule
 - S.Ohkoda et al, Phys. Rev. D 86, 034019 (2012) bound and resonant states of T_{cc} and T_{bb} based on a hadronic molecule.

Interaction: one pion exchange potential and one $\pi,\,\rho$ and ω exchange potential.

We follow this study.

- Lattice QCD
 - Y. Ikeda et al, Phys. Lett. B 729, 85 (2014)
 - M. Padmanath and S. Prelovsek, Phys. Rev. Lett. 129, 032002 (2022)
 - Y. Lyu et al, arXiv:2302.04505 [hep-lat] (2023)

The studies of T_{cc} are summarized in [1] [1] Hua-Xing Chen *et al*, Rept. Prog. Phys. **86**, 026201 (2023)

3 N 2 1 2 N 0 0

Hadronic Molecule in our study

15

Image: A matrix

Hadronic Molecule in our study

Structure

Loosely bound state of two mesons comparable with the deuteron.

Manato Sakai (Nagoya University)

Hadronic Molecule in our study

Structure

Loosely bound state of two mesons comparable with the deuteron.

Interaction

One boson exchange potential (OBEP) $\pi, \rho, \omega, \sigma$

This interaction respects the chiral symmetry and the heavy quark symmetry

Heavy Quark Symmetry

(The spin dependence terms in \mathcal{L}_{heavy}) = $\mathcal{O}(1/m_Q)$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃目 のQQ

Heavy Quark Symmetry

(The spin dependence terms in \mathcal{L}_{heavy}) = $\mathcal{O}(1/m_Q)$ \Rightarrow The heavy quark masses with different angular momenta \vec{J} are degenerate.

Heavy Quark Symmetry

(The spin dependence terms in \mathcal{L}_{heavy}) = $\mathcal{O}(1/m_Q)$ \Rightarrow The heavy quark masses with different angular momenta \vec{J} are degenerate.

(e.g.) $Q\bar{q}$ meson

Spin = 0 Spin = 1

 $\Rightarrow \mbox{The pseudoscalar } P \mbox{ and the vector meson } P^* \mbox{ are degenerate}!! \\ \mbox{This is called the HQS doublet}.$

HQS doublet

• Mass difference between the pseudoscalar and the vector mesons.

HQS doublet

• Mass difference between the pseudoscalar and the vector mesons.

- The mass difference of the pseudoscalar meson and vector meson decreases as the mass of a meson increases.
 - $\Rightarrow P$ and P^* are degenerate $(P = D, B, P^* = D^*, B^*)$.
 - \Rightarrow In the hadronic molecule with heavy quarks,

PP, PP^* and P^*P^* are coupled!!

• Form factor (attached to each vertex)

$$F(ec{q};m)=rac{\Lambda^2-m^2}{\Lambda^2+ec{q}\,^2},~\Lambda$$
: cut off

pion exchange

$$V_{\pi} = \pm \frac{1}{3} \left(\frac{g_{\pi}}{2f_{\pi}} \right)^2 [\vec{\mathcal{O}}_1 \cdot \vec{\mathcal{O}}_2 C(r; m_{\pi}) + S_{\mathcal{O}_1 \mathcal{O}_2} T(r; m_{\pi})] \vec{\tau}_1 \cdot \vec{\tau}_2$$

vector exchange (ho, ω)

$$\begin{split} V_v^{\lambda} &= \pm \frac{1}{3} (\lambda g_V)^2 [2\vec{\mathcal{O}}_1 \cdot \vec{\mathcal{O}}_2 C(r; m_v) - S_{\mathcal{O}_1 \mathcal{O}_2} T(r; m_v)] \vec{\tau}_1 \cdot \vec{\tau}_2 \\ V_v^{\beta} &= \left(\frac{\beta g_V}{2m_v}\right)^2 C(r; m_v) \vec{\tau}_1 \cdot \vec{\tau}_2 \ \left(\vec{\tau}_1 \cdot \vec{\tau}_2 \text{ is removed for } \omega \text{ mesons.}\right) \end{split}$$

 $\triangleright \sigma$ exchange

$$V_{\sigma} = -\left(\frac{g_{\sigma}}{m_{\sigma}}\right)^2 C(r; m_{\sigma})$$

I= nac

Parameter

parameter	value	
g_{π}	0.59	$D^* \to D\pi$
eta	0.9	Lattice QCD
λ	$0.56{\rm GeV^{-1}}$	B decay
g_{σ}	3.4	$g_{\sigma NN}/3$

All parameters expect Λ are fixed.

S. Ahmed et al., CLEO Collaboration, Phys. Rev. Lett. 87, 251801 (2001) Ming-Zhu Liu et al., Phys. Rev. D 99 094018 (2019) C. Isola, Phys. Rev. D 68, 114001(2003)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

\bigcirc T_{bb} in the bottom sector

4 T_{QQ} in the heavy quark limit

Numerical calculation

• Possible channel of T_{cc} with $0(1^+)$

$$\psi_{0(1^{+})}^{\mathrm{HM}} = \begin{pmatrix} |[DD^{*}]_{-}(^{3}S_{1})\rangle \\ |[DD^{*}]_{-}(^{3}D_{1})\rangle \\ |D^{*}D^{*}(^{3}S_{1})\rangle \\ |D^{*}D^{*}(^{3}D_{1})\rangle \end{pmatrix}$$
$$[DD^{*}]_{\pm} = \frac{1}{\sqrt{2}}(DD^{*} \pm D^{*}D)$$

• Solving the Schrödinger e.q. by using the Gaussian expansion method.

E. Hiyama et al, Prog.Part.Nucl.Phys., 51 (2003) 223-307

E. Hiyama et al, Front. Phys. (Beijing) 13 (2018) 6, 132106

We determine Λ to reproduce the experimental data of $T_{cc}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We determine Λ to reproduce the experimental data of $T_{cc}.$

• OPEP (π): no bound state for reasonable Λ

We determine Λ to reproduce the experimental data of $T_{cc}.$

- OPEP (π): no bound state for reasonable Λ
- OBEP $(\pi, \rho, \omega, \sigma)$:

The experimental data of T_{cc} is reproduced for $\Lambda = 1069.8 \,\mathrm{MeV}$.

We determine Λ to reproduce the experimental data of $T_{cc}.$

- OPEP (π): no bound state for reasonable Λ
- OBEP (π, ρ, ω, σ):

The experimental data of T_{cc} is reproduced for $\Lambda = 1069.8 \,\mathrm{MeV}$.

One pion exchange cannot earn the enough attractive force.

 One boson exchange is important.

We determine Λ to reproduce the experimental data of $T_{cc}.$

- OPEP (π): no bound state for reasonable Λ
- OBEP $(\pi, \rho, \omega, \sigma)$:

The experimental data of T_{cc} is reproduced for $\Lambda = 1069.8 \,\mathrm{MeV}$.

- One pion exchange cannot earn the enough attractive force.
 - \rightarrow One boson exchange is important.

315

(日)

We determine Λ to reproduce the experimental data of $T_{cc}.$

- OPEP (π): no bound state for reasonable Λ
- OBEP $(\pi, \rho, \omega, \sigma)$:

The experimental data of T_{cc} is reproduced for $\Lambda = 1069.8 \,\mathrm{MeV}$.

One pion exchange cannot earn the enough attractive force.

 \rightarrow One boson exchange is important.

• $[DD^*]_{(3S_1)}$ is the dominant channel.

< □ > < /□ >

Potential Expectation Value

	$[DD^*]_{-}({}^3S_1)$	$[DD^*]_{-}(^{3}D_1)$	$D^*D^*({}^3S_1)$	$D^*D^*(^3D_1)$
$[DD^*]$ (³ S ₁)	$-4.7(\sigma)$	$-0.55(\pi)$	$-0.31(\rho)$	$-0.34(\pi)$
$[DD^*]$ (³ D ₁)	$-0.55(\pi)$	-0.0048	-0.061	0.01
D^*D^* $(^3S_1)$	$-0.31(\rho)$	-0.061	-0.11	-0.042
D^*D^* $(^3D_1)$	$-0.34(\pi)$	0.01	-0.042	-0.0051

The bosons written in () are ones which mainly contribute to each component.

- σ exchange force is the most important (1,1).
- Tensor force of π exchange is also important (1,2), (2,1), (1,4), (4,1).

 T_{cc} with other quantum numbers with g_{σ} dependence

g_{σ}	3.06	3.4	3.74	
$\Lambda [{\rm MeV}]$	1147.1	1069.8	1001.3	
$0(0^{-})$	-	-	-	_
$0(1^+)$	-0.273	-0.273	-0.273	\leftarrow input
$0(1^{-})$	-	-	-	-
$1(0^{+})$	-	-	-	
$1(0^{-})$	-	-	-	
$1(1^{+})$	-	-	-	
$1(1^{-})$	-	-	-	

The value is given in units of MeV.

 g_{σ} is a coupling constant of σ and Λ is determined to reproduce T_{cc} data.

• There is no bound state with $I(J^P)$ other than $O(1^+)$.

3 A B A B A B B B A A A

• • • • • • • • • • •

• T_{bb} is composed of $bb\bar{q}\bar{q}$.

<ロ> <問> < 目> < 目> < 目> < 目> < 目< の<()</p>

- T_{bb} is composed of $bb\bar{q}\bar{q}$.
- $m_{B^{(*)}} > m_{D^{(*)}} \rightarrow T_{bb}$ is more likely to be bound than T_{cc} .

- T_{bb} is composed of $bb\bar{q}\bar{q}$.
- $m_{B^{(*)}} > m_{D^{(*)}} \to T_{bb}$ is more likely to be bound than T_{cc} .
- OBEP: Fix $\Lambda = 1069.8 \,\mathrm{MeV}$, reproducing the T_{cc} data.

- T_{bb} is composed of $bb\bar{q}\bar{q}$.
- $m_{B^{(*)}} > m_{D^{(*)}} \rightarrow T_{bb}$ is more likely to be bound than T_{cc} .
- OBEP: Fix $\Lambda = 1069.8 \,\mathrm{MeV}$, reproducing the T_{cc} data.

EL SQA

- T_{bb} is composed of $bb\bar{q}\bar{q}$.
- $m_{B^{(*)}} > m_{D^{(*)}} \to T_{bb}$ is more likely to be bound than T_{cc} .
- OBEP: Fix $\Lambda = 1069.8\,{\rm MeV}$, reproducing the T_{cc} data.

▶ [BB*]_(³S₁) is dominant and B*B*(³S₁) is important. (D*D* (³S₁) is not important channel for T_{cc}.)

- T_{bb} is composed of $bb\bar{q}\bar{q}$.
- $m_{B^{(*)}} > m_{D^{(*)}} \to T_{bb}$ is more likely to be bound than T_{cc} .
- OBEP: Fix $\Lambda = 1069.8\,{\rm MeV}$, reproducing the T_{cc} data.

▶ $[\mathbf{BB^*}]_{-}({}^{3}\mathbf{S_1})$ is dominant and $\mathbf{B^*B^*}({}^{3}\mathbf{S_1})$ is important. $(D^*D^* ({}^{3}S_1))$ is not important channel for T_{cc} .) $\therefore \Delta m_B = m_{B^*} - m_B < \Delta m_D = m_{D^*} - m_D$ $\Rightarrow [BB^*]_{-}$ and B^*B^* are more coupled than $[DD^*]_{-}$ and $D^*D^*_{-}$.

Potential Expectation Value

	$[BB^*]_{-}({}^3S_1)$	$[BB^*]_{-}(^{3}D_1)$	$B^*B^*(^3S_1)$	$B^*B^*(^3D_1)$
$[BB^*]_{-}$	$-40(\sigma)$	$-7.3(\pi)$	$-11(\rho)$	$-6.2(\pi)$
$(^{*}S_{1})$ $[BB^{*}]_{-}$ $(^{3}D_{1})$	$-7.3(\pi)$	-0.67	-4.1	0.33
$(^{-1})$ B^*B^* $(^{3}S_1)$	-11(ho)	-4.1	$-14 (\sigma)$	-3.5
B^*B^* $(^3D_1)$	$-6.2(\pi)$	0.33	-3.5	-0.51

The bosons written in () are ones which mainly contribute to each component.

• σ exchange and tensor force of π exchange are important to bind T_{bb} .

Potential Expectation Value

	$[BB^*]_{-}({}^3S_1)$	$[BB^*]_{-}(^{3}D_1)$	$B^*B^*(^3S_1)$	$B^*B^*(^3D_1)$
$[BB^*]$ (³ S ₁)	$-40(\sigma)$	$-7.3(\pi)$	$-11(\rho)$	$-6.2(\pi)$
$[BB^*]$ (³ D ₁)	$-7.3(\pi)$	-0.67	-4.1	0.33
B^*B^* (3S_1)	$-11(\rho)$	-4.1	-14 (σ)	-3.5
B^*B^* $(^3D_1)$	$-6.2(\pi)$	0.33	-3.5	-0.51

The bosons written in () are ones which mainly contribute to each component.

σ exchange and tensor force of π exchange are important to bind T_{bb}.
 (1,3), (3,1) and (3,3) are also important while they are not important for T_{cc}. → B*B*(³S₁) is also important channel.

Manato Sakai (Nagoya University)

T_{bb} with other quantum numbers with g_{σ} dependence

g_{σ}	3.06	3.4	3.74
$\Lambda [{\rm MeV}]$	1147.1	1069.8	1001.3
$0(0^{-})$	-30.7	-24.4	-19.2
$0(1^{+})$	-56.2	-46.0	-37.9
$0(1^{-})$	-	-	-
$1(0^{+})$	-3.70	-7.23	-10.8
$1(0^{-})$	-	-	-
$1(1^{+})$	-0.0254	-2.46	-6.98
$1(1^{-})$	-	-	-

The value is given in units of MeV.

 g_σ is a coupling constant of σ and Λ is determined to reproduce T_{cc} data.

T_{bb} with other quantum numbers with g_{σ} dependence

g_{σ}	3.06	3.4	3.74
$\Lambda [{\rm MeV}]$	1147.1	1069.8	1001.3
$0(0^{-})$	-30.7	-24.4	-19.2
$0(1^{+})$	-56.2	-46.0	-37.9
$0(1^{-})$	-	-	-
$1(0^{+})$	-3.70	-7.23	-10.8
$1(0^{-})$	-	-	-
$1(1^{+})$	-0.0254	-2.46	-6.98
$1(1^{-})$	-	-	-

The value is given in units of MeV.

 g_{σ} is a coupling constant of σ and Λ is determined to reproduce T_{cc} data.

• Many bound states exist (Only $0(1^+)$ state is found for T_{cc}).

T_{bb} with other quantum numbers with g_{σ} dependence

g_{σ}	3.06	3.4	3.74
$\Lambda [{\rm MeV}]$	1147.1	1069.8	1001.3
$0(0^{-})$	-30.7	-24.4	-19.2
$0(1^+)$	-56.2	-46.0	-37.9
$0(1^{-})$	-	-	-
$1(0^+)$	-3.70	-7.23	-10.8
$1(0^{-})$	-	-	-
$1(1^+)$	-0.0254	-2.46	-6.98
$1(1^{-})$	-	-	-

The value is given in units of MeV.

 g_σ is a coupling constant of σ and Λ is determined to reproduce T_{cc} data.

- Many bound states exist (Only $0(1^+)$ state is found for T_{cc}).
- As g_{σ} increases, $T_{bb}(I=0)$ becomes shallower, while $T_{bb}(I=1)$ becomes deeper. $\rightarrow \pi$ is important for $I=0, \sigma$ is dominant for $I=1, \infty$

• Hadronic-Molecule Basis (HMB) \rightarrow Light-Cloud Basis (LCB)

$$\left[L\left[\left[S_{Q_1}S_{q_1}\right]_{S_1}\left[S_{Q_2}S_{q_2}\right]_{S_2}\right]_S\right]_J \to \left[\left[S_{Q_1}S_{Q_2}\right]_{S_Q}\left[L\left[S_{q_1}S_{q_2}\right]_{S_q}\right]_{J_l}\right]_J$$

Image: A matrix and a matrix

EL SQA

 \bullet Hadronic-Molecule Basis (HMB) \rightarrow Light-Cloud Basis (LCB)

$$\left[L \left[\left[S_{Q_1} S_{q_1} \right]_{S_1} \left[S_{Q_2} S_{q_2} \right]_{S_2} \right]_S \right]_J \to \left[\left[S_{Q_1} S_{Q_2} \right]_{S_Q} \left[L \left[S_{q_1} S_{q_2} \right]_{S_q} \right]_{J_l} \right]_J$$

• The transformation from $\psi^{\rm HM}$ to $\psi^{\rm LC}$ is a unitary transformation.

JI DOG

• Hadronic-Molecule Basis (HMB) \rightarrow Light-Cloud Basis (LCB)

$$L\left[\left[S_{Q_{1}}S_{q_{1}}\right]_{S_{1}}\left[S_{Q_{2}}S_{q_{2}}\right]_{S_{2}}\right]_{S}\right]_{J} \rightarrow \left[\left[\mathbf{S}_{Q_{1}}\mathbf{S}_{Q_{2}}\right]_{\mathbf{S}_{Q}}\left[\mathbf{L}\left[\mathbf{S}_{q_{1}}\mathbf{S}_{q_{2}}\right]_{\mathbf{S}_{q}}\right]_{\mathbf{J}_{1}}\right]_{J}$$

- \blacktriangleright The transformation from $\psi^{\rm HM}$ to $\psi^{\rm LC}$ is a unitary transformation.
- In the light-cloud basis, the spin wave function of the hadronic molecule is decomposed into the sector of the heavy quark spin and the light cloud.

• Hadronic-Molecule Basis (HMB) \rightarrow Light-Cloud Basis (LCB)

$$L\left[\left[S_{Q_{1}}S_{q_{1}}\right]_{S_{1}}\left[S_{Q_{2}}S_{q_{2}}\right]_{S_{2}}\right]_{S}\right]_{J} \rightarrow \left[\left[\mathbf{S}_{Q_{1}}\mathbf{S}_{Q_{2}}\right]_{\mathbf{S}_{Q}}\left[\mathbf{L}\left[\mathbf{S}_{q_{1}}\mathbf{S}_{q_{2}}\right]_{\mathbf{S}_{q}}\right]_{\mathbf{J}_{1}}\right]_{J}$$

- \blacktriangleright The transformation from $\psi^{\rm HM}$ to $\psi^{\rm LC}$ is a unitary transformation.
- In the light-cloud basis, the spin wave function of the hadronic molecule is decomposed into the sector of the heavy quark spin and the light cloud.
- The potential matrices become block-diagonal under this transformation.

 $\bullet\,$ Hadronic-Molecule Basis (HMB) \rightarrow Light-Cloud Basis (LCB)

$$L\left[\left[S_{Q_{1}}S_{q_{1}}\right]_{S_{1}}\left[S_{Q_{2}}S_{q_{2}}\right]_{S_{2}}\right]_{S}\right]_{J} \rightarrow \left[\left[\mathbf{S}_{Q_{1}}\mathbf{S}_{Q_{2}}\right]_{\mathbf{S}_{Q}}\left[\mathbf{L}\left[\mathbf{S}_{q_{1}}\mathbf{S}_{q_{2}}\right]_{\mathbf{S}_{q}}\right]_{\mathbf{J}_{1}}\right]_{J}$$

- \blacktriangleright The transformation from $\psi^{\rm HM}$ to $\psi^{\rm LC}$ is a unitary transformation.
- In the light-cloud basis, the spin wave function of the hadronic molecule is decomposed into the sector of the heavy quark spin and the light cloud.
- The potential matrices become block-diagonal under this transformation.
- We can see the spin multiplets of the origins of the doubly heavy tetraquarks obtained by our analyses.

$$V_{\pi,0(1^+)}^{\text{HM}} = \begin{pmatrix} -C_{\pi} & \sqrt{2}T_{\pi} & 2C_{\pi} & \sqrt{2}T_{\pi} \\ \sqrt{2}T_{\pi} & -C_{\pi} - T_{\pi} & \sqrt{2}T_{\pi} & 2C_{\pi} - T_{\pi} \\ 2C_{\pi} & \sqrt{2}T_{\pi} & -C_{\pi} & \sqrt{2}T_{\pi} \\ \sqrt{2}T_{\pi} & 2C_{\pi} - T_{\pi} & \sqrt{2}T_{\pi} & -C_{\pi} - T_{\pi} \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 のへで

$$V_{\pi,0(1^+)}^{\text{LC}} = \begin{pmatrix} -3C_{\pi} & 0 & 0 & 0\\ 0 & C_{\pi} & 2\sqrt{2}T_{\pi} & 0\\ 0 & 2\sqrt{2}T_{\pi} & C_{\pi} - 2T_{\pi} & 0\\ 0 & 0 & 0 & -3C_{\pi} \end{pmatrix}$$

• (1,1) and (3,3) components

$$S_Q = 1$$
, $S_q = 0$

• (2,2) component $S_Q = 0, S_q = 1$

$$V_{\pi,0(1^+)}^{\text{LC}} = \begin{pmatrix} -3C_{\pi} & 0 & 0 & 0\\ 0 & C_{\pi} & 2\sqrt{2}T_{\pi} & 0\\ 0 & 2\sqrt{2}T_{\pi} & C_{\pi} - 2T_{\pi} & 0\\ 0 & 0 & 0 & -3C_{\pi} \end{pmatrix}$$

• (1,1) and (3,3) components

$$S_Q = 1$$
, $S_q = 0$

 $\begin{vmatrix} S_Q - 1, z_q \\ \bullet (2,2) \text{ component} \\ S_Q = 0, S_q = 1 \end{vmatrix}$

• T_{OO} with $0(1^+)$ (Take $m_P = m_{P^*}$)

$$V_{\pi,0(1^+)}^{\text{LC}} = \begin{pmatrix} -3C_{\pi} & 0 & 0 & 0\\ \hline 0 & C_{\pi} & 2\sqrt{2}T_{\pi} & 0\\ \hline 0 & 2\sqrt{2}T_{\pi} & C_{\pi} - 2T_{\pi} & 0\\ \hline 0 & 0 & 0 & -3C_{\pi} \end{pmatrix}$$

• (1,1) and (3,3) components

$$S_Q = 1$$
, $S_q = 0$

• (2,2) component $S_Q = 0, S_q = 1$

• T_{QQ} with $0(1^+)$ (Take $m_P = m_{P^*}$) The ground state of T_{QQ} is the origin of T_{cc} and T_{bb} with $0(1^+)$.

$$[PP^*]_{-}({}^{3}S_1) : P^*P^*({}^{3}S_1) = 1 : 1$$
$$[PP^*]_{-}({}^{3}D_1) : P^*P^*({}^{3}D_1) = 1 : 1$$

$$V_{\pi,0(1^+)}^{\text{LC}} = \begin{pmatrix} -3C_{\pi} & 0 & 0 & 0\\ 0 & \mathbf{C}_{\pi} & \mathbf{2}\sqrt{2}\mathbf{T}_{\pi} & 0\\ 0 & \mathbf{2}\sqrt{2}\mathbf{T}_{\pi} & \mathbf{C}_{\pi} - \mathbf{2}\mathbf{T}_{\pi} & 0\\ 0 & 0 & 0 & -3C_{\pi} \end{pmatrix}$$

• (1,1) and (3,3) components

$$S_Q = 1, \ S_q = 0$$

• (2,2) component $S_Q = 0, S_q = 1$

• T_{QQ} with $0(1^+)$ (Take $m_P = m_{P^*}$) The ground state of T_{QQ} is the origin of T_{cc} and T_{bb} with $0(1^+)$.

$$[PP^*]_{-}({}^{3}S_1) : P^*P^*({}^{3}S_1) = 1 : 1$$
$$[PP^*]_{-}({}^{3}D_1) : P^*P^*({}^{3}D_1) = 1 : 1$$

 \Rightarrow heavy diquark spin $S_Q = 0$, anti light diquark spin $S_q = 1$.

$$V_{\pi,0(1^+)}^{\text{LC}} = \begin{pmatrix} -3C_{\pi} & 0 & 0 & 0\\ 0 & \mathbf{C}_{\pi} & \mathbf{2}\sqrt{2}\mathbf{T}_{\pi} & 0\\ 0 & \mathbf{2}\sqrt{2}\mathbf{T}_{\pi} & \mathbf{C}_{\pi} - \mathbf{2}\mathbf{T}_{\pi} & 0\\ 0 & 0 & 0 & -3C_{\pi} \end{pmatrix}$$

$$S_Q = 1$$
, $S_q = 0$

• (2,2) component
$$S_Q = 0$$
, $S_q = 1$

• T_{QQ} with $0(1^+)$ (Take $m_P = m_{P^*}$) The ground state of T_{QQ} is the origin of T_{cc} and T_{bb} with $0(1^+)$.

$$[PP^*]_{-}({}^{3}S_1) : P^*P^*({}^{3}S_1) = 1 : 1$$
$$[PP^*]_{-}({}^{3}D_1) : P^*P^*({}^{3}D_1) = 1 : 1$$

 \Rightarrow heavy diquark spin $S_Q = 0$, anti light diquark spin $S_q = 1$. $\Rightarrow T_{QQ}$ with $0(1^+)$ in the heavy quark limit belongs to the **HQS** singlet!!

We consider $0(0^-)$ and $0(1^-)$ states. • $\psi_{0(0^-)}^{\mathrm{HM}} \rightarrow \psi_{0(0^-)}^{\mathrm{LC}}$ $\left(\left| [PP^*]_+({}^{3}P_0) \right\rangle \right) \rightarrow \left(- \left| \left[[QQ]_1 \left[P \left[\bar{q}\bar{q} \right]_1 \right]_1 \right]_0 \right\rangle \right)$

We consider $0(0^-)$ and $0(1^-)$ states.

•
$$\psi_{0(0^-)}^{\mathrm{HM}} \rightarrow \psi_{0(0^-)}^{\mathrm{LC}}$$

 $\left(\left| \left[PP^* \right]_+ ({}^{3}P_0) \right\rangle \right) \rightarrow \left(- \left| \left[\left[QQ \right]_1 \left[P \left[\bar{q}\bar{q} \right]_1 \right]_1 \right]_0 \right\rangle \right)$

Potential

$$\begin{aligned} V_{\pi,0(0^-)}^{\rm LC} &= (C_\pi + 2T_\pi) \\ V_{\pi,0(1^-)}^{\rm LC} &= \begin{pmatrix} -3C_\pi & 0 & 0 & 0 & 0 \\ \hline 0 & C_\pi - 4T_\pi & 0 & 0 & 0 \\ \hline 0 & 0 & C_\pi + 2T_\pi & 0 & 0 \\ \hline 0 & 0 & 0 & C_\pi - \frac{2}{5}T_\pi & \frac{6\sqrt{6}}{5}T_\pi \\ \hline 0 & 0 & 0 & 0 & \frac{6\sqrt{6}}{5}T_\pi & C_\pi - \frac{8}{5}T_\pi \end{pmatrix} \end{aligned}$$

We consider $0(0^-)$ and $0(1^-)$ states.

•
$$\psi_{0(0^-)}^{\mathrm{HM}} \rightarrow \psi_{0(0^-)}^{\mathrm{LC}}$$

 $\left(\left| [PP^*]_+({}^{3}P_0) \right\rangle \right) \rightarrow \left(- \left| \left[\left[QQ \right]_1 \left[P \left[\bar{q}\bar{q} \right]_1 \right]_1 \right]_0 \right\rangle \right)$

Potential

$$V_{\pi,0(0^{-})}^{\rm LC} = \left(\begin{array}{c|c} \mathbf{C}_{\pi} + 2\mathbf{T}_{\pi} \\ \hline & \\ \hline & \\ V_{\pi,0(1^{-})}^{\rm LC} \end{array} \right) = \left(\begin{array}{c|c} -3C_{\pi} & 0 & 0 & 0 \\ \hline & 0 & C_{\pi} - 4T_{\pi} & 0 & 0 \\ \hline & 0 & 0 & \mathbf{C}_{\pi} + 2\mathbf{T}_{\pi} & 0 & 0 \\ \hline & 0 & 0 & 0 & C_{\pi} - \frac{2}{5}T_{\pi} & \frac{6\sqrt{6}}{5}T_{\pi} \\ \hline & 0 & 0 & 0 & 0 & \frac{6\sqrt{6}}{5}T_{\pi} & C_{\pi} - \frac{8}{5}T_{\pi} \end{array} \right)$$

We consider $0(0^-)$ and $0(1^-)$ states.

•
$$\psi_{0(0^-)}^{\mathrm{HM}} \rightarrow \psi_{0(0^-)}^{\mathrm{LC}}$$

 $\left(\left| [PP^*]_+({}^{3}P_0) \right\rangle \right) \rightarrow \left(- \left| \left[\left[QQ \right]_1 \left[P \left[\bar{q}\bar{q} \right]_1 \right]_1 \right]_0 \right\rangle \right)$

Potential

$$V_{\pi,0(0^{-})}^{\rm LC} = \left(\begin{array}{c|c} \mathbf{C}_{\pi} + 2\mathbf{T}_{\pi} \\ \hline & \\ \hline & \\ V_{\pi,0(1^{-})}^{\rm LC} \end{array} \right) = \left(\begin{array}{c|c} -3C_{\pi} & 0 & 0 & 0 \\ \hline & 0 & C_{\pi} - 4T_{\pi} & 0 & 0 \\ \hline & 0 & 0 & \mathbf{C}_{\pi} + 2\mathbf{T}_{\pi} & 0 & 0 \\ \hline & 0 & 0 & 0 & C_{\pi} - \frac{2}{5}T_{\pi} & \frac{6\sqrt{6}}{5}T_{\pi} \\ \hline & 0 & 0 & 0 & 0 & \frac{6\sqrt{6}}{5}T_{\pi} & C_{\pi} - \frac{8}{5}T_{\pi} \end{array} \right)$$

We consider $0(0^-)$ and $0(1^-)$ states.

•
$$\psi_{0(0^-)}^{\mathrm{HM}} \rightarrow \psi_{0(0^-)}^{\mathrm{LC}}$$

 $\left(\left| [PP^*]_+({}^{3}P_0) \right\rangle \right) \rightarrow \left(- \left| \left[\left[QQ \right]_1 \left[P \left[\bar{q}\bar{q} \right]_1 \right]_1 \right]_0 \right\rangle \right)$

Potential

$$V_{\pi,0(0^{-})}^{\rm LC} = \left(\begin{array}{c|c} \mathbf{C}_{\pi} + \mathbf{2T}_{\pi} \\ \hline & \\ \hline & \\ V_{\pi,0(1^{-})}^{\rm LC} \end{array} \right) = \left(\begin{array}{c|c} -3C_{\pi} & 0 & 0 & 0 \\ \hline & 0 & C_{\pi} - 4T_{\pi} & 0 & 0 \\ \hline & 0 & 0 & \mathbf{C}_{\pi} + \mathbf{2T}_{\pi} & 0 & 0 \\ \hline & 0 & 0 & 0 & C_{\pi} - \frac{2}{5}T_{\pi} & \frac{6\sqrt{6}}{5}T_{\pi} \\ \hline & 0 & 0 & 0 & 0 & \frac{6\sqrt{6}}{5}T_{\pi} & C_{\pi} - \frac{8}{5}T_{\pi} \end{array} \right)$$

 $\rightarrow T_{QQ}$ with $0(0^{-})$ and $0(1^{-})$ belong to the same HQS multiplet!!

 T_{QQ} in the heavy quark limit • $0(0^-)$ and $0(1^-)$ (Take $m_P = m_{P^*} = 5m_{B^*}$)

1.2

< (T) >

Every bound state of T_{QQ} with 0(0⁻) is degenerate with a certain bound state of T_{QQ} with 0(1⁻).

T_{OO} in the heavy quark limit • $0(0^{-})$ and $0(1^{-})$ (Take $m_P = m_{P^*} = 5m_{B^*}$) -B.E. [MeV] 0(0)0(1-0 796 -4.37 -6.40 -15.6 -38.7 red line -60.1 -104 -141 the origin of HOS partner

Resonant state?

Every bound state of T_{QQ} with $0(0^{-})$ is degenerate with a certain bound state of T_{QQ} with $0(1^{-})$.

$$S_Q = 1, S_q = 1, J_l = 1$$

- blue line $S_{Q} = 1, S_{q} = 1, J_{l} = 2$
- green line $S_{O} = 0, S_{a} = 0, J_{l} = 1$

 T_{bb}

11 900

▲ □ ▶ ▲ 三 ▶ ▲ 三

T_{OO} in the heavy quark limit • $0(0^{-})$ and $0(1^{-})$ (Take $m_P = m_{P^*} = 5m_{B^*}$) -B.E. [MeV] 0(0)-0.796 Every bound state of T_{QQ} with -4.37 -6.40 $0(0^{-})$ is degenerate with a certain -15.6 bound state of T_{QQ} with $0(1^{-})$. -38.7 red line -60.1 $S_{Q} = 1, S_{q} = 1, J_{l} = 1$ blue line -104 $S_{Q} = 1, S_{q} = 1, J_{l} = 2$ green line -141 $S_{O} = 0, S_{a} = 0, J_{l} = 1$ the origin of HOS partner T_{bb} Resonant state?

The origin of T_{bb} with 0(0⁻) obtained by our analysis has the spin structure (S_Q, S_q, J_l) = (1, 1, 1).
 → The HQS partner with 0(1⁻) may exist.

Summary

- We analyze T_{cc} as a hadronic molecule.
 - $I(J^P) = 0(1^+)$ We determine the cut off parameter $\Lambda = 1069.8$ MeV. $[DD^*]$ (³S₁) is the dominant channel.
 - Other quantum numbers
 No bound state exists other than 0(1⁺).
- We analyze T_{bb} as a hadronic molecule.
 - ▶ $I(J^P) = 0(1^+)$ The binding energy of T_{bb} with $0(1^+)$ is 46.0 MeV. $[BB^*]_{-}({}^{3}S_{1})$ is dominant and $B^*B^*({}^{3}S_{1})$ is also important.
 - Other quantum numbers Many bound states exist.

 g_σ dependence of the binding energy varies with the differences in the isospin.

• We analyze T_{QQ} in the heavy quark limit. The HQS partner for T_{QQ} with $0(1^+)$ does not exist. The HQS partner with $0(1^-)$ may exist.