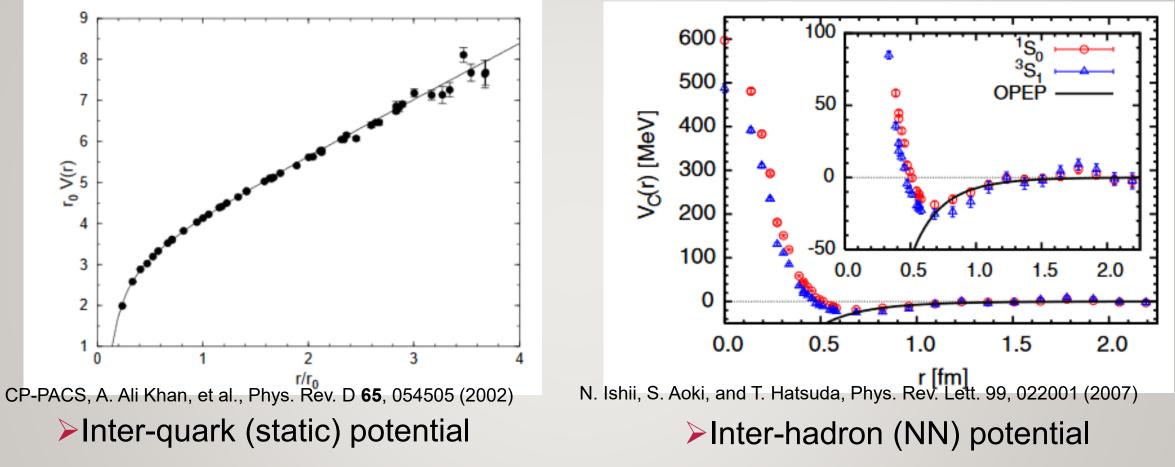
Derivative expansions of hadronic potentials coupled to quarks for X(3872)

<u>Ibuki Terashima</u> (Tokyo Metropolitan University) Tetsuo Hyodo (Tokyo Metropolitan University)

東京都立大学

This talk is based on [I. Terashima and T. Hyodo, PhysRevC.108.035204 (2023)]

Numerical calculation by LQCD



Quark-antiquark potentials and hadron-hadron potentials have been studied independently

Exotic hadron X(3872)

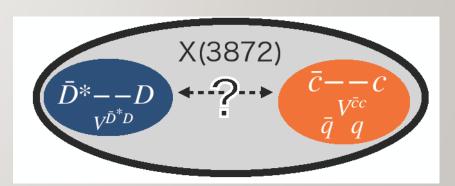
There is no restriction by QCD which prohibits the mixing with each d.o.f

States with same quantum numbers mix by definition

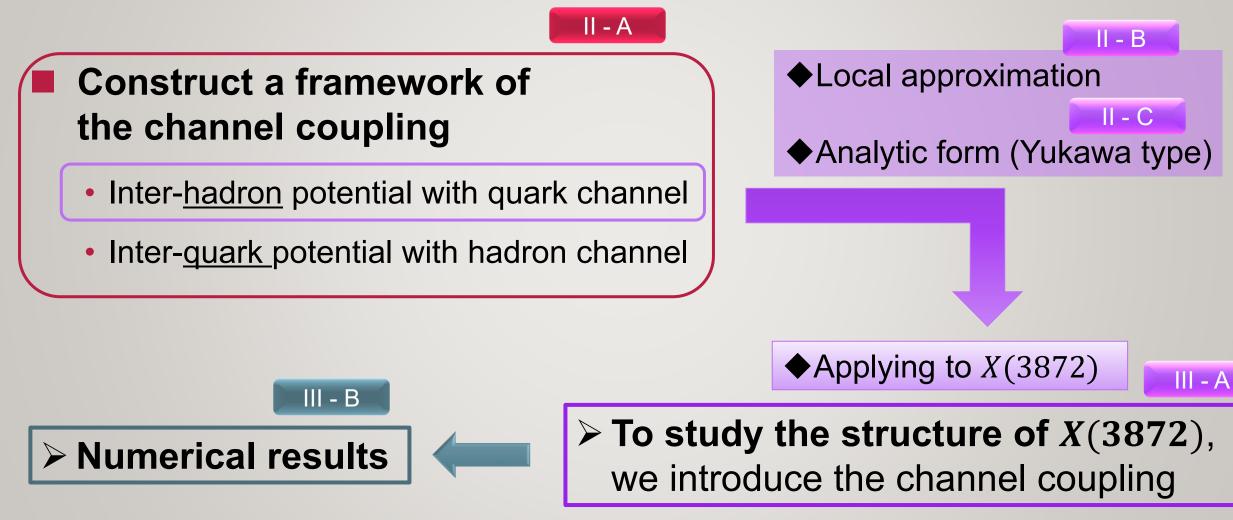
Structure of X(3872) [A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai, and S. Yasui, PTEP 2016 (2016)]

- Mixing with quark and hadron degrees of freedom
- Not enough experimental data and lattice QCD results

How about a channel coupling between quark and hadron degrees of freedom like X(3872)?



II-A, II-B, ... correspond to sections of Ref. [I. Terashima and T. Hyodo, PhysRevC.108.035204 (2023)]



Channel coupling

- ✓ Formulation according to Feshbach method [H. Feshbach, Ann. Phys. 5, 357 (1958); ibid., 19, 287 (1962)]
- Hamiltonian H with channel between quark potential V^q and hadron V^h

$$H = \begin{pmatrix} T^q & 0\\ 0 & T^h + \Delta \end{pmatrix} + \begin{pmatrix} V^q & V^t\\ V^t & V^h \end{pmatrix}$$

 T^{q}, T^{h} :Kinetic energy Δ :Threshold energy V^{t} :Transition potential

• Schrödinger equation with wave functions of quark and hadron channels $|q\rangle$, $|h\rangle$

$$H\begin{pmatrix}|q\rangle\\|h\rangle\end{pmatrix} = E\begin{pmatrix}|q\rangle\\|h\rangle\end{pmatrix}$$

> Two set of equations with quark and hadron channels are obtained

Effective potential

• Eliminate quark channel to obtain an effective Hamiltonian of hadron channel $H^h_{\text{eff}}(E)$

with,
$$H^{h}_{\text{eff}}(E) |h\rangle = E |h\rangle$$
, $V^{h}_{\text{eff}}(E)$ \checkmark No approximation
 $H^{h}_{\text{eff}}(E) = T^{h} + \Delta^{h} + V^{h} + V^{t}G^{q}(E)V^{t}$ \checkmark No approximation
 $G_{q}(E) = (E - (T^{q} + V^{q}))^{-1}$

Quark channel contribution by coupled channels

6

Coordinate representation with initial relative coordinate r and final r'

$$\langle \boldsymbol{r}_{h}' \mid V_{\text{eff}}^{h}(E) \mid \boldsymbol{r}_{h} \rangle = \langle \boldsymbol{r}_{h}' \mid V^{h} \mid \boldsymbol{r}_{h} \rangle + \sum_{n} \frac{\langle \boldsymbol{r}_{h}' \mid V^{t} \mid \phi_{n} \rangle \langle \phi_{n} \mid V^{t} \mid \boldsymbol{r}_{h} \rangle}{E - E_{n}}$$

 \succ Quark channel contribution. Sum of discrete eigenstates E_n

Energy dependent potential (denominator depends on *E*)
Non-local potential (numerator depends on *r*, *r*' independently)

Local approximations

Approximation of non-local potential to local one by two different methods

```
[S.Aoki and K.Yazaki, PTEP 2022, no.3, 033B04 (2022)]
```

1 Formal derivative expansion

• Express non-local potential in terms of derivatives of delta function by **Taylor expansion** at r = r' directly

2 Derivative expansion by HAL QCD method

• Construct the potential from wave function $\psi_{k_0}(r)$ obtained from Schrödinger equation with non-local potentials at momentum k_0

Solve for potentials inversely to construct the local potentials

HAL QCD method in detail

Energy dependent

order of derivative

8

Schrödinger equation with <u>non-local potential</u> at n + 1 points of k_i ($i = 0, 1, \dots, n$)

$$-\frac{1}{2m}\nabla^2\psi_{k_i}(\boldsymbol{r}) + \int d^3\boldsymbol{r'} V_n(\boldsymbol{r}, \boldsymbol{r'}, E)\psi_{k_i}(\boldsymbol{r'}) = E_{k_i}\psi_{k_i}(\boldsymbol{r}) \qquad \text{Unknown: } \psi_{k_i}(\boldsymbol{r})$$

Obtain wavefunctions $\psi_{k_i}(\boldsymbol{r})$

Assume

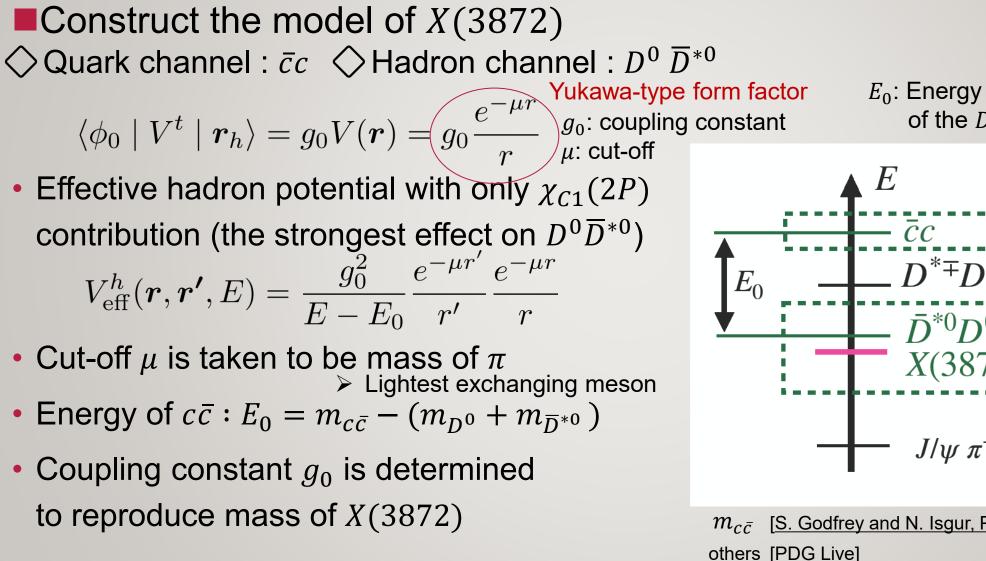
Wave functions $\psi_{k_i}(r)$ satisfy the Schrödinger equation with local potentials

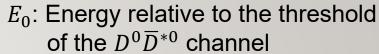
$$\left(-\frac{1}{2m}\boldsymbol{\nabla}^2 + \underline{V_n(\boldsymbol{r},\boldsymbol{\nabla})}\right)\psi_{k_i}(\boldsymbol{r}) = E_{k_i}\psi_{k_i}(\boldsymbol{r}), \quad \text{Unknown: } V_n(\boldsymbol{r},\boldsymbol{\nabla})$$

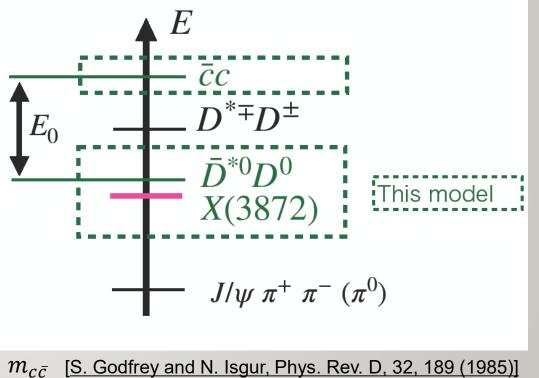
• Obtain local potential $V_n(r, \nabla)$ by solving above equation for the potential inversely

Obtain $\psi = \psi_{k_i}$ exactly by solving local Schrödinger equation at $E = E_{k_i}$, so that the $V_n(\mathbf{r}, \nabla)$ reproduces exact phase shift which is derived from $V_n(\mathbf{r}, \mathbf{r'}, E)$

X(3872)







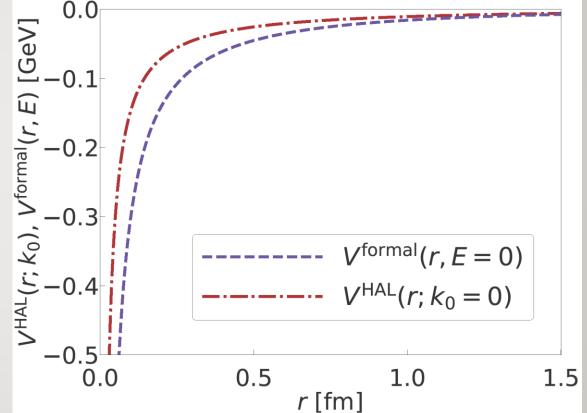
Result : comparison of V^{HAL} and V^{formal}

Compare approximated potentials for X(3872)

• V^{HAL} and V^{formal} from the same non-local potential

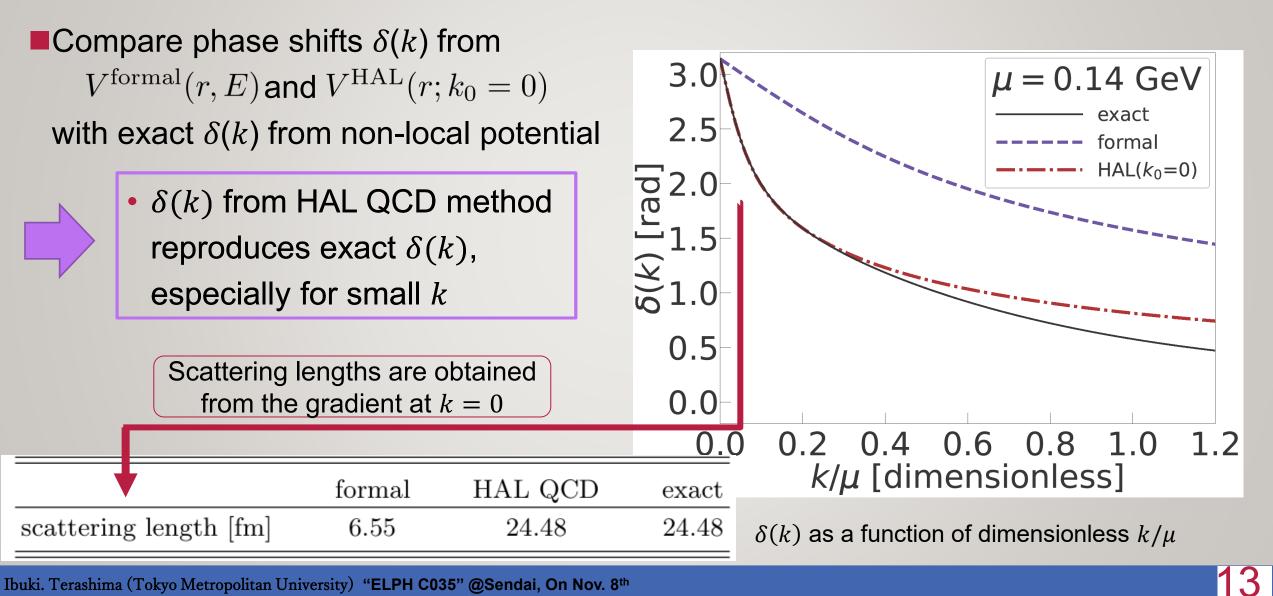
Both potentials are attractive in short-range

Strengths of potential are quantitatively different

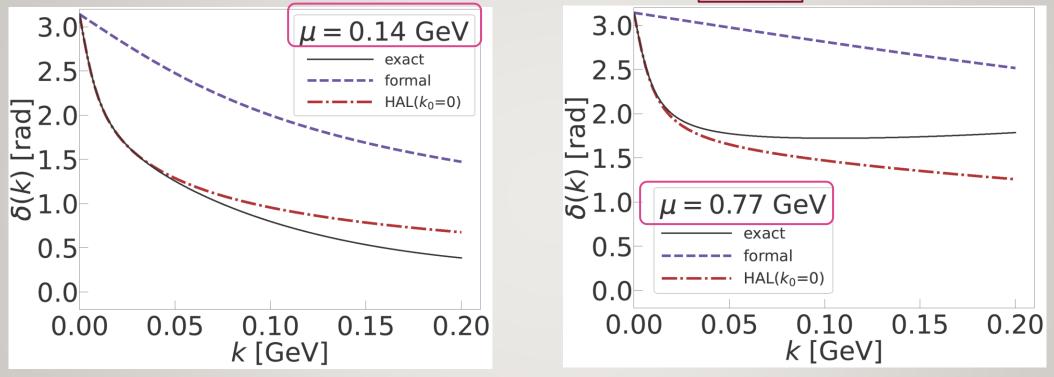


How about physical observables from these potentials?

Result : Phase sift $\delta(k)$

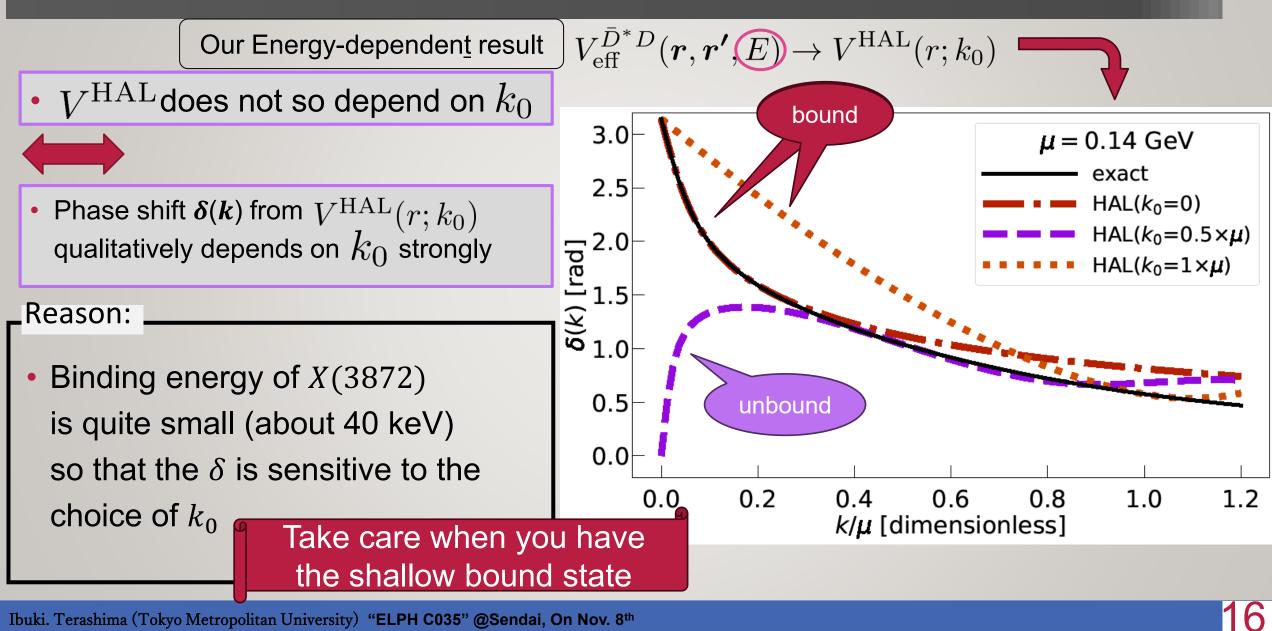


Result : μ dependance of δ



At both μ, V^{HAL} reproduces exact δ(k) especially for low energy
V^{HAL}(r, E_{pot} = 0) reproduce exact scattering length a₀ in any μ

Result : k_0 dependence of $\delta(k)$



Summary

- Channel coupling between quark and hadron d.o.f
- Channel coupling between $c\bar{c}$ and $D\bar{D}^*$ in X(3872)
- Result : channel coupling
- Energy dependentNon-local potential
- Convert non-local E-dependent potential to local by
 (i) formal derivative expansion, (ii)HAL QCD method
 - \checkmark V^{formal} and V^{HAL} are quantitatively different

$$\blacktriangleright V^{\mathrm{HAL}}(r;k_0)$$
 reproduces the exact $\delta(k)$ better than V^{formal}

- **\checkmark** Changing μ does not affect above result
- ✓ $V^{\text{HAL}}(r; k_0)$ has quite small k_0 dependence

 $\succ \delta(k)$ from $V^{\text{HAL}}(r; k_0)$ qualitatively depends on k_0 strongly

Future outlook • Append hadron-hadron interaction so that the study will become more realistic

Local and non-local

- Classified by matrix element of potential operator V in coordinate representation
- Non-local potential $\langle \mathbf{r'} | V | \mathbf{r} \rangle = V(\mathbf{r'}, \mathbf{r})$

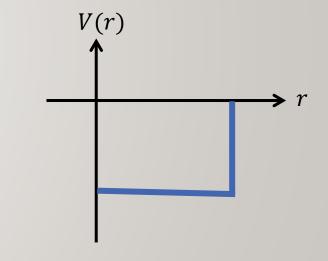
$$-\frac{1}{2m}\nabla^2\psi(\boldsymbol{r}) + \int d^3\boldsymbol{r'} \ V(\boldsymbol{r'},\boldsymbol{r})\psi(\boldsymbol{r'}) = E\psi(\boldsymbol{r})$$

More general potential, but the physics is not so clear

• Local potential $\langle \mathbf{r'} | V | \mathbf{r} \rangle = V(\mathbf{r})\delta(\mathbf{r'} - \mathbf{r})$

 $-\frac{1}{2m}\nabla^2\psi(\boldsymbol{r}) + V(\boldsymbol{r})\psi(\boldsymbol{r}) = E\psi(\boldsymbol{r})$

Potential appeared in elementary quantum mechanics Physical properties are well known (e.g., box potential)



Local approximations with Yukawa

Formal derivative expansion at leading order

$$V^{\text{formal}}(r, E) = \omega(E) \frac{4\pi}{\mu^2} \frac{e^{-\mu r}}{r}.$$

• HAL QCD method at leading order

$$V^{\text{HAL}}(r;k_0) = \frac{k_0^2}{2m} + \frac{-k_0^2 \sin\left[k_0 r + \delta(k_0)\right] - \mu^2 \sin\delta(k_0)e^{-\mu r}}{2m\{\sin\left[k_0 r + \delta(k_0)\right] - \sin\delta(k_0)e^{-\mu r}\}}$$

• HAL QCD method at leading order in the limit of $k_0 \rightarrow 0$

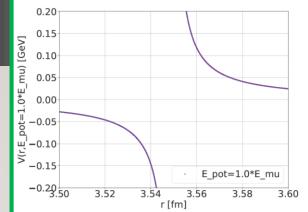
$$V^{\text{HAL}}(r; k_0 = 0) = \frac{a_0 \mu^2 e^{-\mu r}}{2m \left(r - a_0 + a_0 e^{-\mu r}\right)}$$

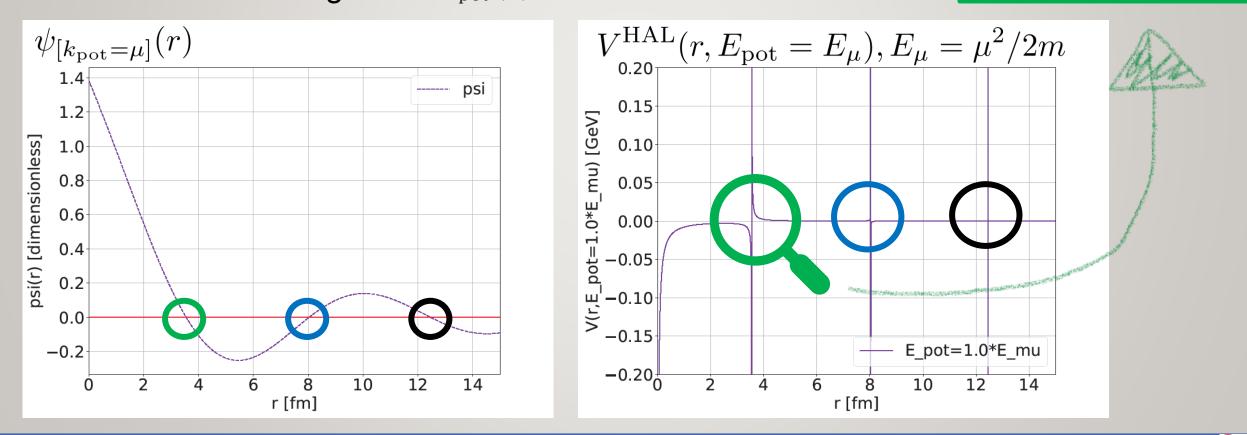
 \succ Written only by a_0

Note : HAL QCD method

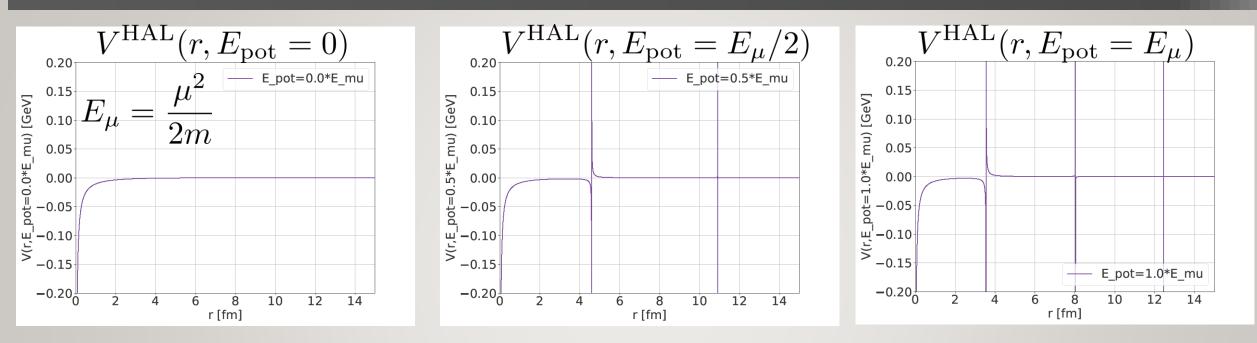
$$V^{\text{HAL}}(r, E_{\text{pot}}) = E_{\text{pot}} + \frac{1}{2mr\psi_{k_{\text{pot}}}(r)} \frac{d^2}{dr^2} \left[r\psi_{k_{\text{pot}}}(r) \right] + \mathcal{O}(\nabla^2),$$

• Potential diverges at $\psi_{k_{\text{pot}}}(r) = 0$





Result : energy dependance of divergence

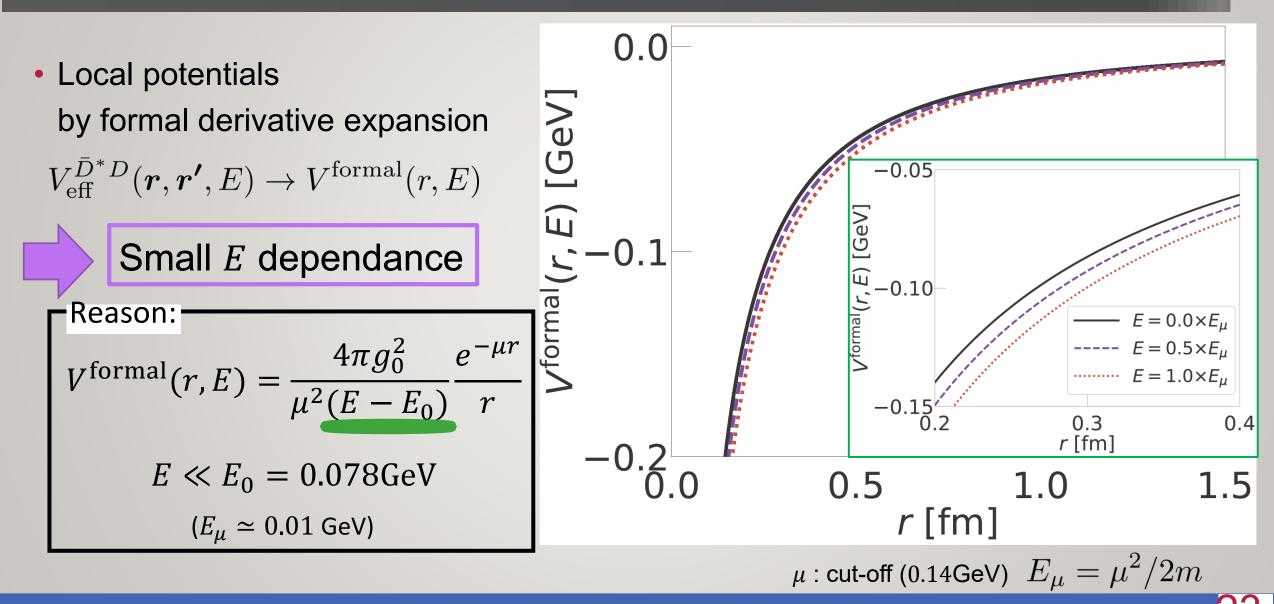


• Change $E_{\rm pot}$ to investigate energy dependance of divergence of $V^{\rm HAL}(r, E_{\rm pot})$

$$V^{\rm HAL}(r,E_{\rm pot}) \text{ diverges at smaller } r \text{ when } E_{\rm pot} \text{ is larger}$$

$$V^{\rm Because frequency} \frac{\sqrt{2mE_{\rm pot}}}{\hbar} \text{ is getting higher when E is larger}$$

Result : *E* dependance of V^{formal} for X(3872)



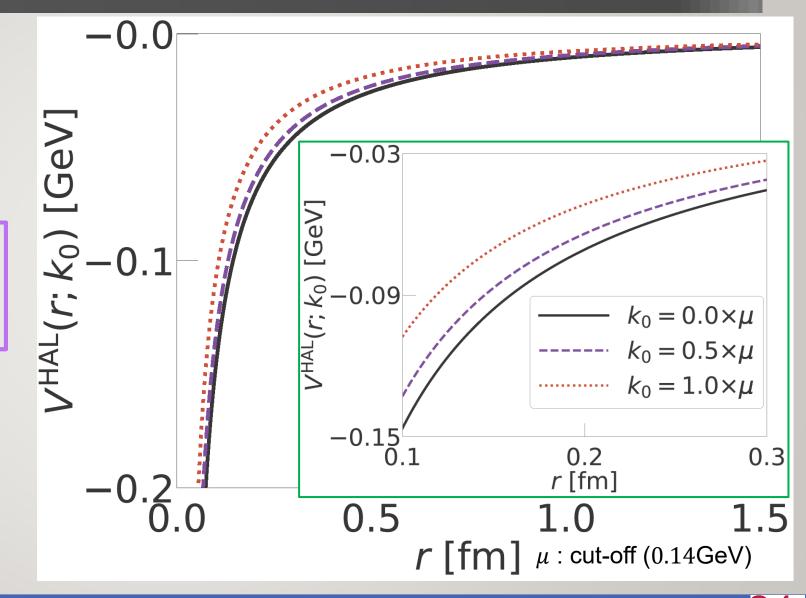
Result : k_0 dependence of V^{HAL} for X(3872)

 Local potentials by HAL QCD method

 $V_{\text{eff}}^{\bar{D}^*D}(\boldsymbol{r},\boldsymbol{r'},E) \to V^{\text{HAL}}(r;k_0)$

Qualitatively small

 k_0 dependance



k_0 dependence of a_0

TABLE II. The k_0 dependence of the scattering length a_0 from the potential by the HAL QCD method, with $\mu = m_{\pi} = 0.14$ GeV and $\mu = m_{\rho} = 0.77$ GeV.

k_0/μ	$\iota \; [dimensionless]$	$a_0(\mu = m_\pi)$ [fm]	$a_0(\mu = m_\rho)$ [fm]
Ο	0	24.48	22.36
0	0.1	24.14	8.32
	0.2	21.38	2.84
	0.3	22.68	1.34
0	0.4	17.17	0.79
0	0.5	-63.97	0.71
	0.6	9.33	0.01
	0.7	5.88	0.23
	0.8	-0.78	0.60
	0.9	-1.27	-0.13
	1	5.21	-0.20

Scattering	lengths	a_0	are	calculated	at $k =$	= 0
------------	---------	-------	-----	------------	----------	-----

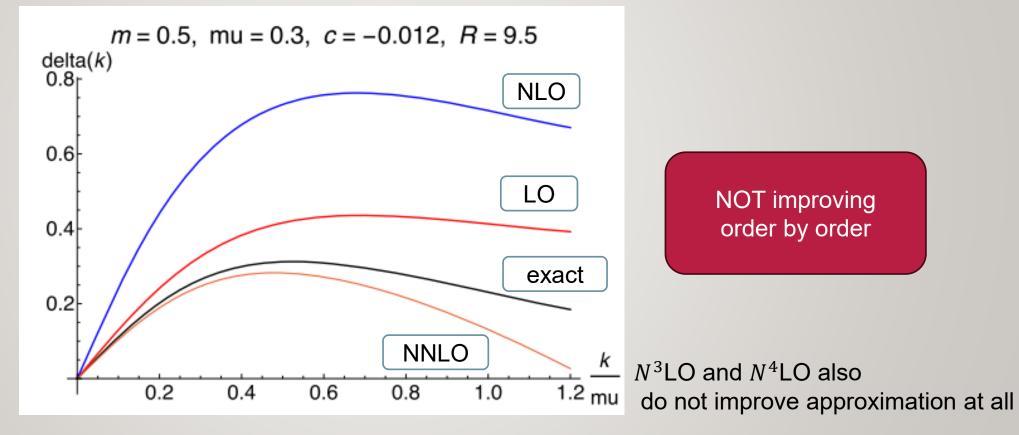
Reproduce the exact
$$\delta(k)$$
 at $k = k_0$

NOT guaranteed to reproduce at
$$k \neq k_0$$

 $\geq \delta(k)$ around k = 0 is NOT fixed

Formal derivative expansion

The previous study pointed out that the formal derivative expansion does not reproduce exact phase shift $\delta(k)$ at NLO so that they introduced the HAL QCD method



[S.Aoki and K.Yazaki, PTEP 2022, no.3, 033B04 (2022)]

Result : effective potential

Coordinate representation with initial relative coordinate r and final r'

$$\langle \boldsymbol{r}'_{h} \mid V_{\text{eff}}^{h}(E) \mid \boldsymbol{r}_{h} \rangle = \langle \boldsymbol{r}'_{h} \mid V^{h} \mid \boldsymbol{r}_{h} \rangle + \sum_{n} \frac{\langle \boldsymbol{r}'_{h} \mid V^{t} \mid \phi_{n} \rangle \langle \phi_{n} \mid V^{t} \mid \boldsymbol{r}_{h} \rangle}{E - E_{n}}$$

> Quark channel contribution. Sum of discrete eigenstates E_n

$$\langle \boldsymbol{r}_{q}' \mid V_{\text{eff}}^{q}(E) \mid \boldsymbol{r}_{q} \rangle = \langle \boldsymbol{r}_{q}' \mid V^{q} \mid \boldsymbol{r}_{q} \rangle + \int d\boldsymbol{p} \frac{\langle \boldsymbol{r}_{q}' \mid V^{t} \mid \boldsymbol{p}_{\text{full}} \rangle \langle \boldsymbol{p}_{\text{full}} \mid V^{t} \mid \boldsymbol{r}_{q} \rangle}{E - E_{\boldsymbol{p}} + i0^{+}}$$

 \succ Hadron channel contribution. Integral of continuous eigenstates E_p

Energy dependent potential (denominator depends on *E*)
Non-local potential (numerator depends on *r*, *r*' independently)

✓ Focus only on the 2nd term which represents the contribution of channel coupling

Result

• Consider an imaginary part of the effective potential of quark $V_{\text{eff}}^q(E)$ $\langle \boldsymbol{r}_q' \mid V_{\text{eff}}^q(E) \mid \boldsymbol{r}_q \rangle = \langle \boldsymbol{r}_q' \mid V^q \mid \boldsymbol{r}_q \rangle + \int d\boldsymbol{p} \frac{\langle \boldsymbol{r}_q' \mid V^t \mid \boldsymbol{p}_{\text{full}} \rangle \langle \boldsymbol{p}_{\text{full}} \mid V^t \mid \boldsymbol{r}_q \rangle}{E - E_{\boldsymbol{p}} + i0^+}$ $\in \mathbb{R}$

Different from $V_{\text{eff}}^h(E)$, $V_{\text{eff}}^q(E)$ induces an imaginary part when $E \ge \Delta$

 $\operatorname{Im}\left[\langle \boldsymbol{r}_{q}^{\prime} \mid V_{\text{eff}}^{q}(E) \mid \boldsymbol{r}_{q} \rangle\right] = 4\pi^{2}m\sqrt{2m(E-\Delta)} \times \langle \boldsymbol{r}_{q}^{\prime} \mid V^{t} \mid \boldsymbol{p}_{\text{full}} \rangle \langle \boldsymbol{p}_{\text{full}} \mid V^{t} \mid \boldsymbol{r}_{q} \rangle \Theta(E-\Delta)$

This is because the integrant has a pole at $E = E_p$.

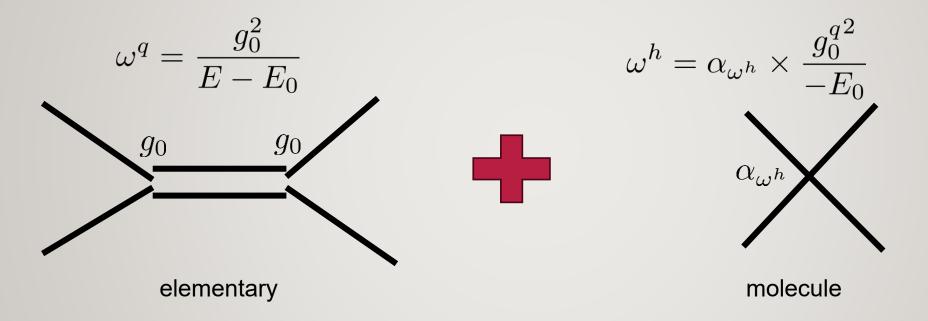
■ When the potential has an imaginary part, the V is not Hermitian

This represents the decay process into a hadron channel properly

Qualitatively different from the static limit (string-breaking)

Preliminary

$$\omega(E) = \omega^h + \omega^q = \omega^h + \frac{g_0^2}{E - E_0}$$



• 分離型のハドロン間相互作用を加える

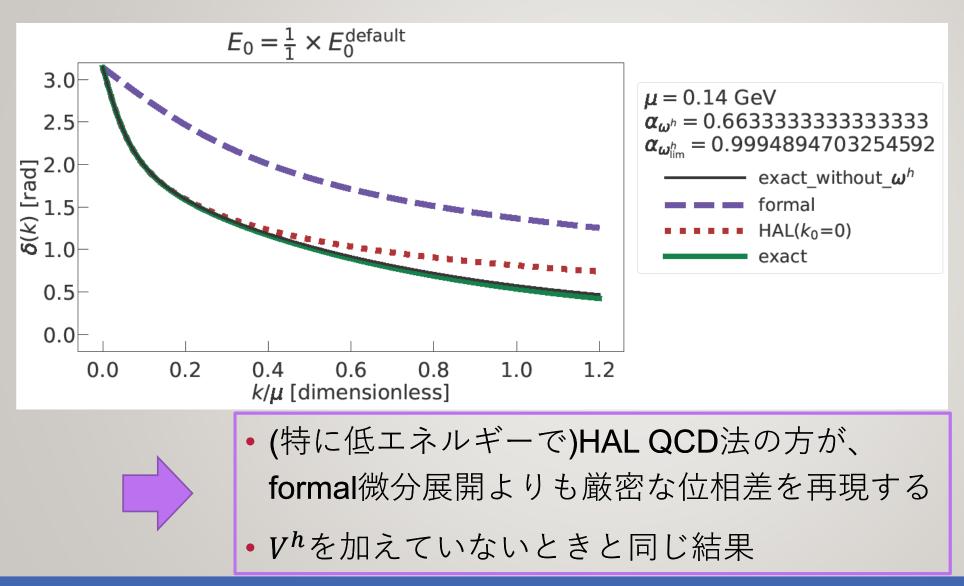
$$H = \begin{pmatrix} T^q & 0\\ 0 & T^h + \Delta \end{pmatrix} + \begin{pmatrix} V^q & V^t\\ V^t & V^h \end{pmatrix}$$

$$V^{h} = \omega^{h} V(\mathbf{r'}) V(\mathbf{r}) \qquad \omega^{h} = \alpha_{\omega^{h}} \times \frac{g_{0}^{q^{2}}}{-E_{0}}$$

このとき、フルなポテンシャル強度ωは、

$$\omega(E) = \omega^{h} + \omega^{q} = \omega^{h} + \frac{g_{0}^{2}}{E - E_{0}} \qquad \qquad g_{0}^{q^{2}} = g_{0}^{2}(\omega^{h} = 0)$$

 $V_{\text{eff}}^{\bar{D}^*D}(\boldsymbol{r},\boldsymbol{r'},E) = \omega(E)V(\boldsymbol{r})V(\boldsymbol{r'})$



Result : Divergence of δ

• δ from V^{formal} diverge at $E = E_0$

$$V^{\text{formal}}(r, E) = \frac{4\pi g_0^2}{\mu^2 (E - E_0)} \frac{e^{-\mu r}}{r}$$

• δ from V^{HAL} doesn't diverge

k_pot=0.0 * mu, mu=0.5, E0=1.0*E0_default

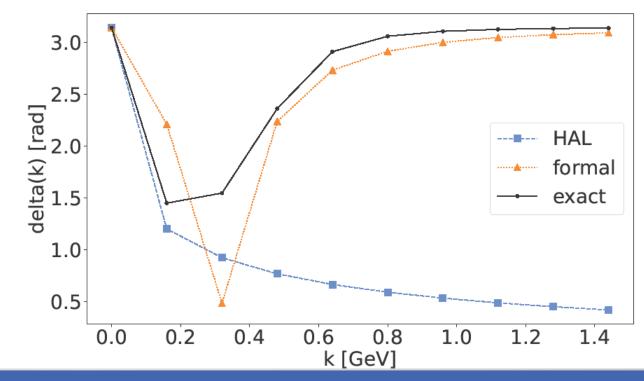


表 6.1 パラメーターの値

物理量	値	出典		
$m_{c\bar{c}}$	$3.950 {\rm GeV}$	クォーク模型の値 [24]	Xc	₁ (2P)
m_{D^0}	$1.86484~{\rm GeV}$	PDG [60]		
$m_{D^{0*}}$	$2.00685~{\rm GeV}$	PDG [60]	_	
μ	$0.14 {\rm GeV}$	PDG [60]	_	
$\hbar c$	0.1973269804 ${\rm GeV}\cdot{\rm fm}$	PDG [60]	_	
$m_{X(3872)}$	$3.87165~{\rm GeV}$	PDG [60]	-	

表 6.2 数値計算で得られたパラメーター

物理量	値	計算式
E_0	$0.07831 {\rm GeV}$	$m_{c\bar{c}} - m_{D^0} - m_{\bar{D}^{*0}}$
m	$0.9666~{\rm GeV}$	$\frac{m_{D^0} + m_{\bar{D}^{*0}}}{m_{D^0} m_{\bar{D}^{*0}}}$
g_0^2	$1.999\times 10^{-5}~{\rm GeV^3}$	$\frac{m_{c\bar{c}} - m_{X(3872)}}{I}$
a_0	124.1 fm	$\frac{8\pi m g_0^2/E_0}{\mu (4\pi m g_0^2/E_0 + \mu^3)}$

