Overview of the LEPS2/BGOegg experiment

Yuji Matsumura ELPH , Tohoku Univ.

LEPS2/BGOegg collaboration

Nov 8, 2023

ELPH workshop C035

LEPS2/BGOegg experiment Phase-I (2014~2016)

BGOegg calorimeter

10²

200

400

600

 2γ invariant mass [MeV]

800

1000

- 1320 BGO crystals
- polar angle : 24° ∼ 144° azimutial angle : 360°
- homogenious
- no housing material
- energy resolution : 1.38% @ 1GeV
- position resolution : 3.1mm @ 1GeV

Physics subjects

- 1. Spectroscopy of light baryon resonances
 - single meson photoproduction ($\gamma p \rightarrow \pi^0 p / \eta p / \eta' p / \omega p$)
- 2. Search for the evidence of exiotic hadron structures – photoproduction of scalar mesons $(\gamma p \rightarrow f_0(980)p / a_0(980)p)$
- 3. Study of hadron properties in nuclear medium
 - Search for η' mesic nuclei
 - Direct measurement of in-medium η' mass spectrum

Single meson photoproduction

- $\gamma p \to \pi^0 p$ (PRC100 (2019) 055202)
 - -I = 1 ⇒ Both $N^*(I = 1/2)$ and $\Delta^*(I = 3/2)$ contribute in the s-channel.
 - High precision data can be obtained thanks to a large cross section.
- $\gamma p \rightarrow \eta p$ (PRC106 (2022) 035201)
 - $I = 0 \Rightarrow$ Only the contribution from $N^*(I = 1/2)$.
 - Possible to investigate the coupling of N^* with $s\bar{s}$.
- $\gamma p \rightarrow \eta' p$
 - Important to explore high mass resonances
- $\gamma p \to \omega p$ (PRC102 (2020) 025201)
 - Couples to N^* with the different spin states.
 - Spin information is studied with spin-density matrix elements.

Differential cross section of $\gamma p \rightarrow \eta p$

- Providing precise data up to extremely backward angles.
- A clear bump structure is seen at higher energies at backward angles.
- The shape and peak position of the bump structure strongly depends on polar angles.
- → Possibly indicating contributions from high-spin resonances?

(PRC106 (2022) 035201)

In-medium η' property

- η' mass in nuclear medium
 - η' meson has larger mass than other
 pseudo scalar mesons due to U_A(1) anomaly effect.
 → The mass of η' is expected to
 decrease at the nuclear density.
 - Predicted mass reduction varies in the range of 40–150 MeV depending on how to construct effective Lagrangian.
 - -> Need experimental information
- Two different method were adopted to measure in-medium η' mass in the BGOegg exp.

• Missing mass spectroscopy of $C(\gamma, p)$

• Tag back-to-back ηp from $\eta' p$ absorption process

 $\eta^{\prime}\text{-nucleus}$ optical potential $\,$ PRL 94 (2005) 232503 $\,$

- $U(r) = (V_0 + iW_0) \times \rho(r)/\rho_0$
- $V_0 = \Delta m(\rho_0)$: mass shift at the normal nuclear density
- $W_0 = -\Gamma (\rho_0)/2$: width at the normal nuclear density
 - If mass shift is large and absorption is small, η' -nucleus bound state may be formed

- No signals indicating bound states were observed.
- Our results indicate small $Br_{\eta'N \to \eta N}$ and/or shallow V_0 .
- New analysis including two nucleon absorption is on-going.

Direct measurement of in-medium η' mass spectrum

- Line shape analysis
 - A direct measurement of mass spectra with invariant mass distribution
 - No experimental data for η'
- $\eta' \rightarrow \gamma \gamma \mod$
 - No final state interaction
 - No radiative tail in the spectrum
- High mass resolution is required.

Spectral fit

BGOegg Phase-II project

- Forward PWO calorimeter (FG)
 reduction of multi-meson BG
 (~1/8 with existing FG / ~1/40 by further upgrade)
- Cu target
 - larger nuclear radius (x1.8)
 - more target nucleons (x1.8)
 - better mass resolution (x0.6)
- larger photon beam intensity by pulse laser ($\sim 5 M cps$)

To confirm the result of in-medium signal in the C target data with high statistics & small BG.

Expected spectrum based on the result of C target data

Cu target : $P(\gamma\gamma) < 600 \text{ MeV/c}$

BGOegg Phase-II project

- Status of BGOegg Phase-II exp.
 - Upgrage of BGOegg system
 - Installation of FG / FPS
 - DAQ upgrade
 - \rightarrow Jan. 2023 : Commissioning run
- 2023FY : Physics run start

- We are performing a meson photoproduction experiment with a highly polarized photon beam at the SPring-8/LEPS2 beamline. The hadron spectroscopy is performed with high-resolution electro-magnetic calorimeter BGOegg.
- The LEPS2/BGOegg experiment (Phase-I) has successfully obtained physics results on
 - light-baryon spectroscopy
 - scalar meson photoproduction
 - in-medium properties of η' mesons.
- The Phase-II project is on-going with high-intensity photon beam and upgrade detector systems. The flagship physics topic is to measure the in-medium η' mass spectrum with small background and high statistics.