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Gravitational Form Factors (GFFs)
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Spherical system
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Stability condition
∇iTij = 0Static EMT conservation

19

The von Laue condition can be proven in exactly the same way also in the Skyrme model [180] and bag model [197].
These models have in common that they describe the nucleon in terms of a static mean field, even though in these
models the mean fields are realized in much di↵erent ways. The generic mean field picture of the nucleon is justfied in
QCD in the large-Nc limit [198, 199]. Thus, the connection of the von Laue condition and the virial theorem is of
more general character than the respective models: it holds in the large-Nc limit in QCD. It is not known whether a
connection of the von Laue condition and extrema of the action can be established also in QCD with finite Nc.
It is interesting to investigate what happens when one increases the value of the current quark masses (as it was

routinely done until recently in lattice QCD studies). In this case the hadron masses increase, while their sizes decrease.
For the EMT densities it has the following implications: the energy density in the center of the nucleon increases and
so does the pressure, see Fig. 5. This implies a more negative D-term [178].
Modifications of the D-term of the nucleon in nuclear matter were studied in [200, 201]. As the density of the

nuclear medium increases, the energy density in the center of the nucleon bound in the medium and the pressure both
decrease. The size of the system, however, grows and the D-term becomes more negative [200, 201].

Chiral perturbation theory cannot predict the value of the nucleon D-term, but it predicts its m⇡-dependence and
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Figure 4. EMT densities of the nucleon from the chiral quark soliton [126]. (a) Energy density T00(r), (b) densities p(r) and
s(r) of the stress tensor Tij(r), and (c) 4⇡r2p(r) where the shaded areas above and below the x-axis are exactly equal to each
other which demonstrates how the von Laue condition (31) is realized. (d) The integrand of the D-term is proportional to r4p(r)
and yields D < 0 upon integration. The negative sign of D emerges as a natural consequence of the “stability pattern” [126].
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Figure 5. The pion mass dependence of the nucleon EMT densities from chiral quark soliton [178] from the chiral limit up to
m⇡ of the order of magnitude of the kaon mass. (a) Energy density normalized as 4⇡r2T00(r)/m such that the curves integrate
to unity, and (b) r2p(r) which integrates to zero. (c) The pressure in the center as function of the energy density in the center.

∫ drr2p(r) = 0

D = D(0) ∝ ∫ drr4p(r) < 0

= − ∫ drr4s(r) < 0
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Experiment
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Figure 1. (a) A natural but impractical probe of EMT form factors is scattering o↵ gravitons. (b) Hard-exclusive reactions like
deeply virtual Compton scattering (DVCS) provide a realistic way to access EMT form factors through GPDs. Here one of the
relevant tree-level diagrams is shown. (c) Information on the EMT structure of particles not available as targets, such as e.g. ⇡0,
can also be accessed from studies of generalized distribution amplitudes (GDAs) which are an “analytic continuation” of GPDs
to the crossed channel. The shown reaction �⇤� ! ⇡0⇡0 (and analog for other hadrons) can be studied in e+e� collisions.

VI. THE LAST GLOBAL UNKNOWN PROPERTY OF A HADRON

The D-term is sometimes referred to as the “last unknown global property.” To explain what this means we recall
that the structure of hadrons, the bound states of strong interactions, is most conveniently probed by exploring
the other fundamental forces: electromagnetic, weak, and (in principle) gravitational interactions. The particles
couple to these interactions via the fundamental currents J

µ
em, J

µ
weak, Tµ⌫

grav which are conserved (in case of weak
interactions we deal with partial conservation of the axial current, PCAC). The matrix elements of these currents are
described in terms of form factors which contain a wealth of information on the probed particle. The undoubtedly most
fundamental information corresponds to the form factors at zero momentum transfer. For the nucleon, these are the
“global properties:” electric charge Q, magnetic moment µ, axial coupling constant gA, induced pseudo-scalar coupling
constant gp, mass M , spin J , and the D-term D. These properties, being related to external conserved currents, are
scale- and scheme-independent in QCD. All global properties are in principle on equal footing and well-known, see
Table I, with one exception: the D-term.

em: @µJ
µ
em = 0 hN 0|Jµ

em|Ni �! Q = 1.602176487(40)⇥ 10�19C
µ = 2.792847356(23)µN

weak: PCAC hN 0|Jµ
weak|Ni �! gA = 1.2694(28)

gp = 8.06(55)

gravity: @µT
µ⌫
grav = 0 hN 0|Tµ⌫

grav |Ni �! m = 938.272013(23)MeV/c2

J = 1
2

D = ?

Table I. The global properties of the proton defined in terms of matrix elements of the conserved currents associated with
respectively electromagnetic, weak, and gravitational interaction. Notice the weak currents include the partially conserved axial
current, and gA or gp are strictly speaking defined in terms of transition matrix elements in the neutron �-decay or muon-capture.
The values of the properties are from the particle data book [107] and [108] (for gp) except for the unknown D-term.

In some cases (e.g. free particles, Goldstone bosons) the value of the D-term is fixed by general principles (see
discussions below). For other particles the D-term is not fixed and it reflects the internal dynamics of the system
through the distribution of forces. In strongly interacting systems the D-term is sensitive to correlations in the system.
For example, the baryon D-term behaves as ⇠ N

2
c whereas all other global observables (mass, magnetic moments, axial

charge, etc.) behave at most as ⇠ Nc in the large Nc limit. For a large nucleus the D-term shows also anomalously
fast increase with the atomic mass number D ⇠ A

7/3.

[Polyakov, Schweitzer (2018)]
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7/3.
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The KM15 fit Eq. (75) corresponds to the negative D-term of DQ = �2.0 at µ2 = 4 GeV2 with about 20% statistical
uncertainty and unestimated systematic one. The result of the KM15 fit [20] corresponding to Eqs. (75,76) is shown in
Fig. 10 in comparison with theoretical predictions and other fits to DVCS data.

Recently an analysis of the JLab data [90, 101]12 was reported [222] where an experimental information on the quark
contribution to the D-term was also extracted. Additionally, the pressure distribution in the proton was presented in
Ref. [222]. Below we compare the theoretical predictions with the data on the form factor, and not with the pressure
distribution of [222] as the latter was obtained under model assumptions which are still missing clear justification.

In Ref. [222] the dispersion relations subtraction constant �(t) (see Eq. (72) for the definition) at the normalisation
point of µ2 = 1.5 GeV2 was presented on their Fig. 4 [223]. The main di↵erence of the analysis in [222] with that in
[20] is the much smaller systematic uncertainties in the former. This di↵erence calls for a clarification.
The D

Q(t) form factor obtained from the analysis of [222] with help of Eq. (76) is also shown in Fig. 10 where for
comparison we include the results for the D-term form factor from dispersion relations [185], lattice QCD [184] and
models [126, 174, 180].
The dispersion relation study of Ref. [185] used information on pion parton distribution functions which fixes the

overall normalization of the form factor: in Fig. 10 the result for DQ(t) is shown which is normalized as DQ = �1.56.
The results from the dispersion relations and lattice QCD show the quark contribution to D

Q(t) and refer to the scale
µ
2 = 4GeV2 [184, 185]. The lattice data were obtained in a hybrid approach using domain wall valence quarks with

2 + 1 flavors of improved staggered sea quarks not including disconnected diagrams. The “dataset 6” from [184] shown
in Fig. 10 was taken on a 283⇥32 lattice with a lattice spacing a = 0.124 fm and a pion mass of m⇡ = (352.3±1.4)MeV.
The results from bag [174], Skyrme [180], and chiral quark soliton13 [126] model show the total scale–independent D(t).

Keeping all this in mind, Fig. 10 shows a remarkable agreement. The MIT bag model [174] seems to underestimate
the magnitude of the D-term form factor, the Skyrme model [180] seems to overestimate it (though, with di↵erent
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Figure 10. The DQ(t) form factor obtained from the KM15 fit [20] in comparison to DQ(t) from the Je↵erson Lab analysis
[222], calculations from dispersion relations [185], lattice QCD [184], and results from the bag [174], chiral quark soliton [126]
and Skyrme [180] model. The JLab result [222] refers to a normalisation point around µ2 = 1.5 GeV2. The KM15 fit, dispersion
relations and lattice results show the contribution of quarks to the D-term at the QCD scale of 4GeV2. The bag, Skyrme, and
chiral quark soliton (cf. footnote 13) models show the total D-term form factor which is renormalization scale independent.

12
These data are included in the experimental database of Ref. [20]

13
The chiral quark soliton model is based on the instanton picture of the QCD vacuum which is valid at a low scale set by the inverse

instanton size ⇢�1
av ' 0.6GeV, see e.g. the review by D. I. Diakonov [224]. Therefore the D-term calculation [126] can also be viewed as

the quark contribution DQ
(t) at the normalisation point of µ2 ' ⇢�2

av ' 0.4 GeV
2
, see the discussion in [225]. The instanton calculus

allows one to evaluate systematically hadronic matrix elements of QCD operators in an expansion in powers of the small parameter

provided by the instanton packing fraction. The instanton contribution to the gluon D-term is suppressed by this small parameter and

will be studied in future works.

最近の実験

4(taken from 1805.06596)
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[Burkert-Elouadrhiri-Girod 2019]

Polyakov-Schweitzer のレビュー
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Two GFFs for pion from GDA
[Kumano et al. (2018)]

Aq(0) = 0.70
Dq(0) = − 0.75 < 0

Stability
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Lattice
[Shanahan, Detmold (2019)]

quantities. Based on chiral perturbation theory [18–22], the
quark-mass dependence of this isoscalar, purely gluonic
quantity is expected to be mild compared with that of many
other observables, such as the nucleon electromagnetic
form factors. Compared with the LQCD determination of
the isoscalar quark D-term form factor at similar quark
masses, the gluon form factor is approximately twice as
large, with a different t dependence, as shown in Fig. 1 and
discussed in Ref. [15].
Model dependence.—Since the pressure and shear

distributions in Eq. (4) involve Fourier transforms of the
D-term form factor, a functional form must be used to
interpolate and extrapolate the data determined at discrete
values of t over a finite interval. In order for the Fourier
transform to converge, the form factor must fall off at large
jtj faster than 1=jtj. As discussed in BEG, a tripole form,
which has the asymptotic behavior expected from helicity
selection rules [23], is a natural ansatz. Fits using this form
describe the LQCD results reasonably well over their entire
kinematic range, as shown in Fig. 1. Nevertheless, pressure
and shear distributions determined under the assumption of
this form suffer significant model dependence, since there
is no a priori reason that DðtÞ has such a simple form; it
need not be monotonic, nor positive definite.
An alternative parametrization of the t dependence of

GFFs is provided by a modified z expansion,

Dq=gðt; μÞ ¼
1

ð1 − t=Λ2Þ3
Xkmax

k¼0

ak½zðtÞ%k; ð6Þ

with zðtÞ ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p %=½ ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p %.
Since the conformal mapping guarantees analyticity around
z ¼ 0, and unitarity guarantees convergence [24–26], the z
expansion provides a more reliable estimate of uncertain-
ties in regions unconstrained by data. Modified z-expansion
fits to the quark and gluon GFFs from LQCD, with the
tripole mass Λ fixed to that determined by a pure tripole fit
to the GFF and with kmax ¼ 2, tcut ¼ 4m2

π , and t0 ¼
tcut½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2 GeVÞ2=tcut

p
%, are shown in Fig. 1. In each

case, the parametrization is reasonably well constrained
over a kinematic range that is sufficient for the GFFs to
become indistinguishable from zero within uncertainties.
Nevertheless, these fits are considerably less well con-
strained than the tripole fits. Further discussion of the
model dependence in fits to the GFFs is provided in the
Supplemental Material [27].
Pressure distribution and shear forces in the proton.—

Figure 2 shows the pressure computed using the LQCD
determinations of both quark and gluon D-term form
factors for both the tripole parametrization and modified
z expansion [29]. Given the larger uncertainties in the latter
fits to the D-term form factors, the z-expansion pressure is
less well determined, although still resolved from zero by

several standard deviations at the peak values. The
differences provide an estimate of model dependence.
In Fig. 3, the quark and gluon shear forces in the proton,

determined from modified z-expansion fits to the D-term
GFFs [Eq. (6)] are shown, along with a rendering of the
tangential forces in the proton [4].
The shear and pressure distributions can be combined to

define a mechanical radius of the proton [4], hr2mechi¼R
r2ZðrÞd3r=

R
ZðrÞd3r, where ZðrÞ¼ 2

3sðrÞþpðrÞ. Using
the pressure and shear distributions determined from the
LQCD results, this is found to be hr2mechi¼ 0.51ð2Þ fm2

using the modified z expansion to parametrize the D-term
GFFs and 0.57ð1Þ fm2 using the tripole ansatz. This is
smaller than the experimentally determined charge radius

FIG. 2. (Left) Pressure distribution of the proton computed
using tripole parametrizations of the LQCD quark D-term GFF
and the LQCD gluon D-term GFF. The contributions from the
quark and gluon terms are represented by the purple dotted and
green dashed bands, respectively, while the total is denoted by the
orange solid band. (Right) The same quantities, determined based
on modified z-expansion parametrizations of the D-term form
factors.

FIG. 3. (Left) Quark (purple) and gluon (green) shear distri-
butions in the proton determined from modified z-expansion fits
to the LQCD GFFs in the MS scheme at μ ¼ 2 GeV, as well as
the total shear (orange) defined as their sum. (Right) Tangential
forces in the proton. The color coding and arrows represent the
tangential shear vector field defined in Ref. [4].
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An alternative parametrization of the t dependence of

GFFs is provided by a modified z expansion,

Dq=gðt; μÞ ¼
1

ð1 − t=Λ2Þ3
Xkmax

k¼0

ak½zðtÞ%k; ð6Þ

with zðtÞ ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p %=½ ffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut − t0

p %.
Since the conformal mapping guarantees analyticity around
z ¼ 0, and unitarity guarantees convergence [24–26], the z
expansion provides a more reliable estimate of uncertain-
ties in regions unconstrained by data. Modified z-expansion
fits to the quark and gluon GFFs from LQCD, with the
tripole mass Λ fixed to that determined by a pure tripole fit
to the GFF and with kmax ¼ 2, tcut ¼ 4m2

π , and t0 ¼
tcut½1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2 GeVÞ2=tcut

p
%, are shown in Fig. 1. In each

case, the parametrization is reasonably well constrained
over a kinematic range that is sufficient for the GFFs to
become indistinguishable from zero within uncertainties.
Nevertheless, these fits are considerably less well con-
strained than the tripole fits. Further discussion of the
model dependence in fits to the GFFs is provided in the
Supplemental Material [27].
Pressure distribution and shear forces in the proton.—

Figure 2 shows the pressure computed using the LQCD
determinations of both quark and gluon D-term form
factors for both the tripole parametrization and modified
z expansion [29]. Given the larger uncertainties in the latter
fits to the D-term form factors, the z-expansion pressure is
less well determined, although still resolved from zero by

several standard deviations at the peak values. The
differences provide an estimate of model dependence.
In Fig. 3, the quark and gluon shear forces in the proton,

determined from modified z-expansion fits to the D-term
GFFs [Eq. (6)] are shown, along with a rendering of the
tangential forces in the proton [4].
The shear and pressure distributions can be combined to

define a mechanical radius of the proton [4], hr2mechi¼R
r2ZðrÞd3r=

R
ZðrÞd3r, where ZðrÞ¼ 2

3sðrÞþpðrÞ. Using
the pressure and shear distributions determined from the
LQCD results, this is found to be hr2mechi¼ 0.51ð2Þ fm2

using the modified z expansion to parametrize the D-term
GFFs and 0.57ð1Þ fm2 using the tripole ansatz. This is
smaller than the experimentally determined charge radius

FIG. 2. (Left) Pressure distribution of the proton computed
using tripole parametrizations of the LQCD quark D-term GFF
and the LQCD gluon D-term GFF. The contributions from the
quark and gluon terms are represented by the purple dotted and
green dashed bands, respectively, while the total is denoted by the
orange solid band. (Right) The same quantities, determined based
on modified z-expansion parametrizations of the D-term form
factors.

FIG. 3. (Left) Quark (purple) and gluon (green) shear distri-
butions in the proton determined from modified z-expansion fits
to the LQCD GFFs in the MS scheme at μ ¼ 2 GeV, as well as
the total shear (orange) defined as their sum. (Right) Tangential
forces in the proton. The color coding and arrows represent the
tangential shear vector field defined in Ref. [4].
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FIG. 10. The scale- and scheme-independent total GFFs of the pion, obtained by summing the gluon and quark contributions.
The red bands show the next-to-leading order (NLO) �PT prediction for the low |t| region, using a range of estimates for the
low-energy constants, as presented in Ref. [15].

monopole ↵ ⇤ [GeV] �2/d.o.f.

A⇡
g (t) 0.546(18) 1.129(41) 0.9

A⇡
q (t) 0.481(15) 1.262(37) 1.4

A⇡
v (t) 0.4276(78) 1.300(22) 1.2

z-expansion ↵0 ↵1 ↵2 �2/d.o.f.

A⇡
g (t) 0.547(17)�0.021(51)�0.09(23) 0.9

A⇡
q (t) 0.480(15) 0.014(40) 0.06(17) 1.5

A⇡
v (t) 0.4273(93) 0.034(20) 0.123(71) 1.0

TABLE III. Fit parameters of the monopole and modified
z-expansion parametrizations of the t-dependence of the pion
GFFs A⇡

i (t) renormalized in the MS scheme at scale µ =
2 GeV.

monopole ↵ ⇤ [GeV] �2/d.o.f.

D⇡
g (t) �0.596(65) 0.677(65) 1.2

D⇡
q (t) �0.304(26) 1.44(21) 1.0

D⇡
v (t) �0.322(12) 1.286(76) 3.4

z-expansion ↵0 ↵1 ↵2 �2/d.o.f.

D⇡
g (t) �0.598(34) 0.01(13) 0.1(1.2) 1.2

D⇡
q (t) �0.316(16) 0.037(38) 0.65(66) 0.9

D⇡
v (t) �0.3356(93) 0.041(31) 0.34(26) 3.3

TABLE IV. Fit parameters of the monopole and modified
z-expansion parametrizations of the t-dependence of the pion
GFFs D⇡

i (t) renormalized in the MS scheme at scale µ =
2 GeV. We note the high �2/d.o.f of the D⇡

v (t) fits, which are
due to three data-points fluctuating away from the trend of
the curve, as seen in the center right panel of Fig. 7.

GFFs on an ensemble with m⇡ = 450 MeV [28, 29], and
with a lattice extraction [32] in the forward limit with
Nf = 2+ 1+ 1 flavors at quark masses corresponding to
the physical pion mass. Our result for A⇡

q (0) is however
smaller than the result found in Ref. [32]. In contrast,
we find a slightly larger contribution from gluons than
from quarks to the momentum fraction of the pion at
µ = 2 GeV. The separate quark flavor contributions,
A⇡

u+d(0) and A⇡
s (0), are also smaller than those found in

Ref. [32]. A possible explanation could be that the latter
were computed on an Nf = 2 + 1 + 1 ensemble at the
physical quark mass, while our results were obtained on
a single ensemble at m⇡ ⇡ 170 MeV and could not be
extrapolated to the physical point. Our results for A⇡

q (0)
are also larger than what was found in Ref. [30] after ex-
trapolation to the continuum limit. Our results for the
total momentum fraction are slightly larger than the sum
rule prediction, A⇡(0) = 1, in the case of the monopole
fit, but statistically consistent with it in the case of the
z-expansion parametrization.

The total D-term obtained is consistent with �PT
when the first chiral-symmetry breaking correction [15],
which for the quark masses of this ensemble is esti-
mated to result in D⇡(0) ⇡ �0.96, is taken into con-
sideration, and smaller in magnitude than the leading
order chiral limit prediction of D⇡(0) ⇡ �1. Our re-
sult for D⇡

q (0) is statistically consistent with the result
found in Refs. [26, 27], which was computed from several
ensembles at heavier pion masses and extrapolated to
the physical point, neglecting quark disconnected con-
tributions and mixing with the gluon EMT. We find
D⇡

g (0) to be smaller in magnitude than the result at
m⇡ ⇡ 450 MeV neglecting mixing with quarks found in
Ref. [29], �0.793(84), in the case of the monopole fit, but
consistent with it in the case of the z-expansion.

Nucleon

Pion [Hackett, et al. (2023)]

r2 p(
r)

(×
10

−2
Ge

V2 )

r2 s(r
)(

×1
0−2

Ge
V2 )

Aπ (t)

D
π (t)

r (fm) r (fm)

t (GeV2) t (GeV2)

total
quark cont
gluon cont

total
quark cont
gluon cont
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Study GFFs for the Vector meson from 
Holographic QCD (Top down approach) 
The First analysis of GFFs for the vector meson from 
the Top down approach 
Reveal the relation between the Stability condition and 
Hadron physics

Motivation

Investigate some aspects of Confinement and 
the role of Chiral symmetry breaking.
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AdS/CFT approach
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AdS/CFT correspondence

9

Z4d
QFT = Z10d

string = exp( − S5d
(gravity+matter))

z
ϕ1,2,...ϕ1,2,...

(0)

Boun
dary Bulk 5dim theory

QFT

Read off  
< 𝒪 >

⟨𝒪1𝒪2 . . . ⟩=
δS5d

On−shell[ϕ1, ϕ2, . . . ]
δϕ1

(0)δϕ2
(0) . . .z = ∞

∂M (M)

10d → 5d
Compactify

On-shell actionString length → 0 
Classical limit

The n point function
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Sakai-Sugimoto model

10

S = − C∫ −ggMPgNQTr(FMNFPQ)Bulk action

i∫ dx4eiq⋅x⟨0 |𝒯(JμJν) |0⟩ = ∑
n

gnψn(z)
q2 + m2n

(ημν − qμqν/q2)

All the contents of QCD are included
but contains redundant heavy matter fields (~1GeV)

= − κ∫ Tr(k(z)−1/3FμνFμν + k(z)FμzFμz)
 : Gravitational field 
 : Field strength of  gauge fields

gMN
FMN SU(Nf )

Two point function

 : Metrick(z) = 1 + z2

M = x0, x1, . . . . x9

μ = x0, x1, x3, x4

Mass of vector meson = 
Eigenvalues of bulk EoM

Decay constants for vector mesons 
←Determined by Metric

Eigenfunctions

Only two parameter

 : Time ordering 
 : Chiral current

𝒯
Jμ

 : momentum 
 transfer

q
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Results
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Matrix elements for EMT

11

⟨0 |Jα
VTμνJβ

V |0⟩

Form factor D(t)

GFFs
 : Vector currentsJα

V  : EMTTμν

D(q) = − A(mV, q)
∞

∑
n

αnggVV
n

q2 + M2n

Decay constants 
of n’s glueball

Coupling constants of 
glueball-vector meson×2

The n’s glueball mass

All values are 
determined by 
the metric

 : Vector meson massmV
 : momentum transferq
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Glueball dominance

12

(GFFs) ∝
∞

∑
n

αnggVV
n

q2 + M2n
∞

∑
n

ggVV
n

Graviton

ector mesonVector mesonV

αn

Vector meson 
dominance

The n’s Glueball

∞

∑
n The n’s 
Vector meson

Photon

Hadron Hadron

Gravitational interaction with hadrons 
occurs via Glueballs.

EM interaction with hadrons 
occurs via Vector mesons.
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D-term and Sum rule

13

D = D(0) = − A(mρ, q = 0)
∞

∑
n

αnggVV
n

M2n

= − A(mρ, q = 0) × C < 0

∞

∑
n

αnggVV
n

M2n
= C (const.)

Stability condition

D-term

Sum rule
We connect the 
stability and hadron 
spectra
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Summary and Outlook

14

To approach the understanding of Confinement from the 
Onset mechanism of Stress distribution inside hadrons 
 The first attempt to determine the GFFs of a Meson 
using the Top down approach 
Gravitational interaction with hadrons is via Glueballs 
(Glueball dominance)  
We find a relation between hadron spectra and stability.

Thank you for your attention

Further calculation 
Axial sector 
More relation of hadron physics


