

Manami Nakagawa

¹RIKEN, High Energy Nuclear Physics Lab.

A. Kasagi^{1,11}, Y. He^{1,3}, S. Sugimoto^{1,4}, W. Dou⁴, V. Drozd⁵, H. Ekawa¹, S. Escrig^{1,6}, Y. Gao^{1,7,8}, E. Liu^{1,7,8}, A. Muneem⁹, K. Nakazawa^{1,2}, C. Rappold⁵, N. Saito¹, T. R. Saito^{1,10}, M. Taki¹¹, Y. K. Tanaka¹, H. Wang¹, A. Yanai^{1,4}, J. Yoshida¹², M. Yoshimoto¹³.

²Gifu University, ³Lanzhou University, ⁴Saitama University,
⁵University of Groningen, ⁶Instituto de Estructura de la Materia, CSIC-Madrid,
⁷Institute of Modern Physics, CAS, ⁸University of Chinese Academy of Sciences,
⁹Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, ¹⁰GSI,
¹¹Rikkyo University, ¹²Tohoku University, ¹³Nishina Center, RIKEN

Contents

- Introduction
- Nuclear emulsion & Machine learning
- Hypernuclear search
- Summary

³∧H

 \rightarrow Precise measurement is necessary

Our approach : Nuclear emulsion & State-of-the-art technology ³

Nuclear emulsion

- J-PARC E07 Experiment
 - To search for double hypernuclei
 - Already 33 events observed by (K-,K+) trigger
 - Non-triggered events
 - Thousands of double hypernuclei
 - Millions of single hypernuclei
- Overall scanning

microscope

 \sim 1300 emulsion sheets Data size: 140 PB Background: 10¹⁰ events Eye check : \sim 560 years

Machine learning

100 µm

Hypertriton detection

Detection is suitable for machine learning, but no training data
→ Create images from physics simulations

Production of Simulated Image ①Simulate events by Geant4

Color = depth to reproduce defocusing

Simulated hypertriton

50 µm

Production of Simulated Image ②Convert real image to line image as BG

Color = depth to reproduce defocusing

Simulated hypertriton

Real background image

Background image

Production of Simulated Image ②Convert real image to line image as BG

Color = depth to reproduce defocusing

Simulated hypertriton

Background image

Line image from real image

Production of Simulated Image ³Synthesize

Color = depth to reproduce defocusing

Simulated hypertriton

Should convert to microscopic image

Production of Simulated Image ④Convert image by GAN

Color = depth to reproduce defocusing

- Generative Adversarial Networks (GAN)
 - Train Generator and Discriminator simultaneously arXiv:1406.2661

- pix2pix Model is applied
 - Image style transformation arXiv:1611.07004

Synthesized line image

Should convert to microscopic image

Production of Simulated Image ④Convert image by GAN

- Generative Adversarial Networks (GAN)
 - Train Generator and Discriminator simultaneously arXiv:1406.2661

- pix2pix Model is applied
 - Image style transformation arXiv:1611.07004

Input image of training data is obtained

3 _AH event detection using object detection

example of training data https://www.cis.upenn.edu/~jshi/ped_html/

Image

Mask

Mask R-CNN Object detection model arXiv:1703.06870

* Track length resolution is too low to make bias of binding energy

12

Detection

 Detection with trained model

Published A. Kasagi, et al., NIM A, 1056 (2023) 168663

• Examples of detected hypernuclear events

Detected 1075 events Identified 183 events in 0.55% of entire data

2023. Aug.

³_AH event observation

2023. Aug.

T.R. Saito, et al., Nat Rev Phys **3**, 803–813 (2021).

14

Analysis of ${}^{3}_{\Lambda}H \& {}^{4}_{\Lambda}H$

- Fitting tracks to determine range (& vertex)
 - images were taken under high magnified lens

15

20 µm

Track length measurements

Analysis of ${}^{3}_{\Lambda}H \& {}^{4}_{\Lambda}H$

 Binding energy calculation - invariant mass: $M_{hyp} = \sqrt{M_{He}^2 + P_{He}^2} + \sqrt{M_{\pi}^2 + P_{He}^2}$

-Binding energy: $B_{\Lambda} = (M_{He} + M_{\Lambda}) - M_{hyp}$

track length of α to calibrate momentum

 Binding energy calculation - invariant mass: $M_{hyp} = \sqrt{M_{He}^2 + P_{He}^2} + \sqrt{M_{\pi}^2 + P_{He}^2}$

 ${}^{4}{}_{\Lambda}H$ 50 40 2023 Mar. 30 BA = 2.048 +/- 0.096 H4L 20 10 0 8 10 -6 -4 -2 0 6 BA [MeV] 85 events 57 events calibrated required at-rest decay (144 events now)

 α decay event track length of α

Range [µm]

Analysis of ${}^{3}_{\Lambda}H \& {}^{4}_{\Lambda}H$

 α decay event

track length of α to calibrate momentum

Automation by Reinforcement Learning

- Automatic tracking of π track
 - $-\pi$ track is too thin to tack by image analysis
 - ~ 6 hours / π track
 by human eyes

- Automatic tracking of α track
 - For momentum calibration
 - ~400 α/ 1 day
 / hypernuclear event
 by human hands

Reinforcement learning

- Overview
 - One of three categories of machine leaning technique
 - Learn to Maximize total reward
 - like how a baby learns
 - Game playing is applied mainly
 - Suitable to optimize a route

Automation by Reinforcement Learning

- Automatic tracking of π track
 - $-\pi$ track is too thin to tack by image analysis
 - ~ 6 hours / π track by human eyes

- Automatic tracking of α track
 - For momentum calibration
 - ~400 α/ 1 day
 / hypernuclear event
 by human hands

Automation by Reinforcement Learning

- Automatic tracking of π track
 - $-\pi$ track is too thin to tack by image analysis
 - ~ 6 hours / π track by human eyes

- Automatic tracking of α track
 - For momentum calibration
 - ~400 α/ 1 day
 / hypernuclear event
 by human hands

Single hypernuclear search

- Three-body (mesonic) decay as a first step
 - Many hypernuclei decay with many-body final states
 - Especially ${}^{3}_{\Lambda}H$, ${}^{4}_{\Lambda}H$ & ${}^{4}_{\Lambda}He$
 - ${}^{3}_{\Lambda}H$: Comparison with 2-body decay
 - ${}^4_{\Lambda}$ H : Comparison with 2-body decay
 - ${}^{4}_{\Lambda}$ He: Only old emulsion data

Single hypernuclear search

Searched region: 0.01% of entire data in 2023 Mar.

• Detected candidates of three-body decay event – Unfortunately, unique solution cannot be found

12 solutions remain...

1.
$${}^{8}_{\Lambda}\text{He} \rightarrow {}^{6}\text{He} + d + \pi^{-}$$

2. ${}^{5}_{\Lambda}\text{H} \rightarrow p + p + \pi^{-} + 3n$

To be summarized in Master thesis by Shohei Sugimoto 24 Saitama Univ., RIKEN

Double hypernuclear search

- Double hypernuclear event
 - Observe new double hypernuclei
 - Increase statistics of known double hypernuclei
- ${}^{6}_{\Lambda\Lambda}$ He detection as a first step

Phys. Rev. Lett. 87, 212502 (2001)

20 µm

αρπ-

Double hypernuclear search

Detected candidates of double-hypernuclear events

Double hypernuclear search

• Detected candidates of double-hypernuclear events – Non mesonic decay is hard to identify

Future experiments

Making emulsion with Nagoya U.

- Binding energy of ¹²_AC
 @ stopped K⁻
 - Remeasure binding energy of ¹² C by emulsion

- Binding energy & Level structure of Λ hypernuclei
 - Tag by emulsion
 - Coincidence with SSD

Machine learning allows us to find events by emulsion only

Summary & Perspective

- Precise binding energy measurement of hypernuclei
 - To solve hypertriton puzzle
- Nuclear emulsion
 - For J-PARC E07 experiment
 - Overall scan of whole data
- Machine learning
 - Simulated image production by Geant4 + GAN
 - Object detection as event detection
- On-going search
 - Two-body decay (at rest) of $^3{}_{\Lambda}$ H & $^4{}_{\Lambda}$ H
 - Single hypernuclear search
 - Double hypernuclear search

 \rightarrow We will provide precise binding energies of various hypernuclei