ELPH C035

π中間子原子精密分光による 原子核中のカイラル凝縮定量評価

Quantitative evaluation of chiral condensate in nuclear medium via precision spectroscopy of pionic atoms

RIKEN Nishina Center Kenta Itahashi for piAF collaboration

	published 2023/3
nature physics	T. Nishi, K.I. et al
Article	https://doi.org/10.1038/s41567-023-02001-x
Chiral symmetry re density observed in	storation at high matter pionic atoms

Nature Physics 19, 788-793(2023) DOI: 10.1038/s41567-023-02001-x

Chiral condensate, order parameter of chiral symmetry

Lattice QCD calculated T dependence of chiral condensate

Temperature dependence of the chiral condensate from lattice QCD with 2 + 1 quark flavours and almost physical quark masses

Remark: sign problem makes it difficult for lattice to approach non-zero ρ region

Ikeno et al., PTP126 (2011) 483 5

Pion-nucleus interaction

Overlap between pion w.f. and nucleus → π works as a probe at ρ_e~0.58ρ_s

π-nucleus interaction is changed for wavefunction renormalization of medium effect

Ericson-Ericson potential $U_{opt}(r) = U_{s}(r) + U_{p}(r),$ $U_{s}(r) = b_{0} \rho + b_{1} (\rho_{n} - \rho_{p}) + B_{0} \rho^{2}$ $U_{p}(r) = \frac{2\pi}{\mu} \vec{\nabla} \cdot [c(r) + \varepsilon_{2}^{-1} C_{0} \rho^{2}(r)] L(r) \vec{\nabla}$

Pion-nucleus interaction and chiral condensate

Overlap between pion w.f. and nucleus → π works as a probe at ρ_e~0.58ρ_s

π-nucleus interaction is changed for wavefunction renormalization of medium effect

Ericson-Ericson potential

 $U_{\text{opt}}(r) = U_s(r) + U_p(r),$ $U_s(r) = b_0 \rho + b_1 (\rho_n - \rho_p) + B_0 \rho^2$ $U_p(r) = \frac{2\pi}{\mu} \vec{\nabla} \cdot [c(r) + \varepsilon_2^{-1} C_0 \rho^2(r)] L(r) \vec{\nabla}$

In-medium Glashow-Weinberg relation

γ=0.184±0.003

Jido, Hatsuda, Kunihiro, PLB670, 109 (2008)

Pion-nucleus interaction and chiral condensate

Spectroscopy of pionic atoms in (*d*,³He) reactions

Missing mass spectroscopy to measure excitation spectrum of pionic atoms

(d,³He) Reaction Spectroscopy in RIBF

Kenta Itahashi, RIKEN

High Precision Spectrum of ¹²²Sn(*d*,³He) in 2014 run

Pionic atom unveils hidden structure of QCD vacuum

Takahiro Nishi¹, Kenta Itahashi¹,* DeukSoon Ahn^{1,2}, Georg P.A. Berg³, Masanori Dozono¹,
Daijiro Etoh⁴, Hiroyuki Fujioka⁵, Naoki Fukuda¹, Nobuhisa Fukunishi¹, Hans Geissel⁶, Emma Haettner⁶,
Tadashi Hashimoto¹, Ryugo S. Hayano⁷, Satoru Hirenzaki⁸, Hiroshi Horii⁷, Natsumi Ikeno⁹, Naoto Inabe¹,
Masahiko Iwasaki¹, Daisuke Kameda¹, Keichi Kisamori¹⁰, Yu Kiyokawa¹⁰, Toshiyuki Kubo¹,
Kensuke Kusaka¹, Masafumi Matsushita¹⁰, Shin'ichiro Michimasa¹⁰, Go Mishima⁷, Hiroyuki Miya¹,
Daichi Murai¹, Hideko Nagahiro⁸, Megumi Niikura⁷, Naoko Nose-Togawa¹¹, Shinsuke Ota¹⁰,
Naruhiko Sakamoto¹, Kimiko Sekiguchi⁴, Yuta Shiokawa⁴, Hiroshi Suzuki¹, Ken Suzuki¹², Motonobu Takaki¹⁰,
Hiroyuki Takeda¹, Yoshiki K. Tanaka¹, Tomohiro Uesaka¹, Yasumori Wada⁴, Atomu Watanabe⁴,
Yuni N. Watanabe⁷, Helmut Weick⁶, Hiroki Yamakami⁵, Yoshiyuki Yanagisawa¹, and Koichi Yoshida¹

High Precision Spectrum of ¹²²Sn(*d*,³He) in 2014 run

Best resolution 287 keV (FWHM) 15

Nishi, KI et al., Nat. Phys. (2023)

Deduced b₁ from pionic Sn spectrum

b₁ = -0.1005 is deduced

	[keV]	Statistical	Systematic
$B_{\pi}(1s)$	3831	± 3	+78 - 76
$B_{\pi}(2p)$	2276	± 3	+84 - 83
$B_{\pi}(1s) - B_{\pi}(2p)$	1555	± 4	± 12
$\Gamma_{\pi}(1s)$	316	± 12	+36 - 39
$\Gamma_{\pi}(2p)$	164	± 17	+41 - 32
$\Gamma_{\pi}(1s) - \Gamma_{\pi}(2p)$	152	± 20	+28 - 36

Nishi, KI et al., Nat. Phys. (2023)

Deduced b₁ with corrections

Deduced b₁ with corrections

Result: deduced chiral condensate

Result: deduced chiral condensate

Analysis is ongoing for RIBF-135 Systematic spectroscopy of pionic Sn isotopes for higher precision <qq> deduction

a	ра	Да	Да	ра	Да	ра	ра	Да	ра	Da	ра	ра	Dа	ра
16	117	118	119	120	121	122	123	124	125	126	127	128	129	130
¦s	Cs													
15	116	117	118	119	120	121	122	123	124	125	126	127	128	129
le	Xe													
14	115	116	117	118	119	120	121	122	123	124	125	126	127	128
Ι	I	I	I	I	I	I	I	I	I	I	I	I	I	I
13	114	115	116	117	118	119	120	121	122	123	124	125	126	127
'e	Те													
12	113	114	115	116	117	118	119	120	121	122	123	124	125	126
b	Sb													
11	112	113	114	115	116	117	118	119	120	121	122	123	124	125
'n	Sn													
10	111	112	113	114	115	116	117	118	119	120	121	122	123	124
'n	In													
09	110	111	112	113	114	115	116	117	118	119	120	121	122	123

RIBF-135 (2021) for higher precision <qq> deduction

D-candidate: S.Y. Matsumoto

New plan for $d < qq > /d\rho$ at ρ_e

New plan for $d < qq > /d\rho$ at ρ_e

Experimental deduction of $\sigma_{\pi N}$

$$\sigma_{\pi N} \equiv m_q / 2m_N \Sigma_{u,d} < N \ \bar{q}q \ N >$$

quark contribution to nucleon mass

$$\frac{b_1^0}{b_1(\rho)} \simeq \frac{\langle \bar{q}q \rangle(\rho)}{\langle \bar{q}q \rangle(0)} \simeq 1 - \rho \frac{\sigma_{\pi N} f_{\pi}^2}{m_{\pi}^2} \left(1 - \frac{3k_{\rm F}^2}{10M_N^2} + \frac{9k_{\rm F}^4}{56M_N^4}\right) \dots$$

Two approaches:

- derivation from b₁(ρ)
 Ikeno et al., PTEP 2023, 033D03
- 2. determine $d < qq > /d\rho$ at ρ_e and extrapolate to $\rho=0$

Previous values of $\sigma_{\pi N}$

https://doi.org/10.1140/ep js/s11734-021-00145-6

Next experiment RIBF-214 PAC approval with rank A

Proposing D(¹³⁶Xe,³He) reaction at T = 250 MeV/u at RIBF Inverse kinematics for higher precision!

	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146
	Sm	Sm	Sm	Sm	Sm	Sm	Sm	Sm	Sm	Sm	Sm	Sm	Sm	Sm	Sm	Sm
	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145
		C	400	cin	~ ~	ain	+ ~	c –			Pm	Рm	Рm	Pm	Pm	Рm
Crossing point of											139	140	141	142	143	144
I long isotope and isotone chair										ns	Nd	Nd	Nd	Nd	Nd	Nd
											138	139	140	141	142	143
	Pr	Pr	Pr	Pr	Pr	Pr	Pr	Pr	Pr	P.:	Pr	Pr	Pr	Pr	Pr	Pr
	S	vcte	ma	tic	me	aciii	rem	ent	5	136	137	138	139	140	141	142
	Systematic measurement									Ce	Се	Ce	Ce	Ce	Ce	Ce
	0	r ISC		ie c	nair		ay r	lave	4	135	136	137	138	139	140	141
	smaller ambiguities from										La	∿⊿	La	La	La	La
	nue	clea	r de	ensi	itv c	dist	ribu	Itio	ns ³	134	135	135	137	138	139	140
	Du	Du	Du	Du	Du	Da	Du	Da	Ъu	Ba	Ba	Ba	Ва	Ba	Ba	Ba
	124	125	126	127	128	129	130	131	132	133	134	135	1°6	137	138	139
	Cs	Cs	Cs	Cs	Cs	Cs	Cs	Cs	Cs	Cs	Cs	Cs	Cs	CS	Cs	Cs
	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138
	Xe	Xe	Xe	Xe	Xe	Xe	Xe	Xe	Xe	Xe	Xe	Хe	Xe	Xe	Ke	Xe
	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137
	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I

KI, Y.K.Tanaka et al.

N=82

First application of NP2212-RIBF214 inverse kinematics reactions

T. Nishi et al., PRL **120**, 152505 (2018)

First application of NP2212-RIBF214 inverse kinematics reactions

NP2212-RIBF214

Experimental setup

Missing mass resolution can be improved!

Estimated missing mass resolution and target thickness

Striking spectrum with 150 keV resolution

Striking spectrum with 150 keV resolution

Summary

- Chiral condensate at ρ_e is evaluated to be reduced by 77±2%, which is linearly extrapolated to 60±3% at the nuclear saturation density.
- The binding energies and widths of the pionic 1s and 2p states in Sn121 were determined with high precision. Taking difference between the 1s and 2p values drastically reduces the systematic errors.
- Recent theoretical progress was adopted to the <qq> deduction, which directly relates the chiral condensate and the pion-nucleus interaction.
- We calculated various corrections for the first time and applied them. The corrections
 made substantial effects. After the corrections, the chiral condensate ratio was deduced with
 much higher reliability.
- For future, we are analyzing data of systematic study of pionic Sn isotopes to achieve higher precision <qq>.
- We also plan measurement in "inverse kinematics" reactions for pionic Xe 136, which may lead to pionic RI. Resolution will be further improved. Now, we are aiming at the π N σ term.