The anomaly-driven breaking of chiral symmetry in the NJL model and the instanton liquid model

ELPH研究会@東北大学電子光理学研究センター 2023年11月8,9日 <u>Yamato Suda</u>, Daisuke Jido

Department of Physics, Tokyo Institute of Technology

Introduction

- Motivation
 - Role of $U_A(1)$ anomaly in dynamical chiral symmetry breaking
 - $U_A(1)$ anomaly assists dynamical chiral symmetry breaking[1]
 - Sigma mass is suppressed [1]
- Contents
 - Anomaly-driven breaking of chiral symmetry in chiral effective models [1]
 - Generalization of anomaly-driven breaking
 - Application to instanton liquid model
 - Summary

[1] S. Kono, D. Jido, Y. Kuroda and M. Harada, PTEP 2021, 093D02 (2021)

Anomaly-driven breaking of chiral symmetry in chiral effective models

Reference: S. Kono, D. Jido, Y. Kuroda and M. Harada, PTEP 2021, 093D02 (2021)

Anomaly-driven breaking of chiral symmetry

• Chiral symmetry breaking is described by chiral effective models

ModelInteractionUnbrokenDynamically BrokenNJL [2]
$$\mathcal{L}_{int} = \sum_{a=0}^{8} \frac{g_S}{2} [(\bar{q}\lambda_a q)^2 + (\bar{q}i\lambda_a \gamma_5 q)^2]$$
 $g_S < g_S^{crit}$ $g_S > g_S^{crit}$

4/20

[2] Y. Nambu and G. Jona-Lasinio, Phys. Rev. **112** (1961) 345 $q = (u \ d \ s)^T$: Quark flavor triplet

Anomaly-driven breaking of chiral symmetry

• $U_A(1)$ anomaly term assists dynamical chiral symmetry breaking

What characterizes anomaly-driven breaking?

• Strength of coupling g_s and existence of non-trivial vacuum

NJL $\mathcal{L}_{int} = \sum_{a=0}^{8} \frac{g_S}{2} [(\bar{q}\lambda_a q)^2 + (\bar{q}i\lambda_a\gamma_5 q)^2] \\ + g_D [det(\bar{q}_i(1-\gamma_5)q_j) + H.c.] \qquad \qquad$	Model	Interaction	Dynamically broken	
NJL $\mathcal{L}_{int} = \sum_{a=0}^{S} \frac{g_{S}}{2} [(\bar{q}\lambda_{a}q)^{2} + (\bar{q}i\lambda_{a}\gamma_{5}q)^{2}]$ $g_{S} > g_{S}^{crit}$ $g_{S} < g_{S}^{crit}, g_{D} < 0$ $+g_{D} [\det(\bar{q}_{i}(1-\gamma_{5})q_{j}) + H.c.]$ (6.120)		$\sum_{n=1}^{8} q_{n}$	Normal	Anomaly-driven
	NJL	$\mathcal{L}_{\text{int}} = \sum_{a=0}^{35} \frac{g_5}{2} [(\bar{q}\lambda_a q)^2 + (\bar{q}i\lambda_a\gamma_5 q)^2] + g_D [\det(\bar{q}_i(1-\gamma_5)q_j) + \text{H.c.}]$	$g_S > g_S^{\text{crit}}$	$g_S < g_S^{\text{crit}}, g_D < 0$

Relationships of properties of $f_0(500)$

• Mass of $\sigma/f_0(500)$ is physical test ground

2.0

Generalization of anomaly-driven breaking

Generalization of anomaly-driven breaking

• From coupling constant to curvature of effective potential at origin Definition in the NJL model

9/20

- Generalized definition is equivalent to original one in the NJL model
- One can determine anomaly-driven breaking or not by evaluating the curvature of effective potential (equivalent to vacuum energy density) at origin of quark condensate.

• Interacting Instanton liquid model (IILM) [3] [3] E. Shuryak, Nucl. Phys. B 203 (1982) 93; 116

• What?

- QCD vacuum \approx Liquid of instantons

Low energy region

Instanton-instanton interaction

$$Z_{\text{IILM}} = \frac{1}{N_{+}!N_{-}!} \int \left(\prod_{i=1}^{N_{+}+N_{-}} \underline{d\Omega_{i}d(\rho_{i})} \right) \exp(-\underline{S_{\text{int}}}) \prod_{f=1}^{N_{f}} \underbrace{\text{Det}(\gamma_{\mu}D_{\mu}+m_{f})}_{\text{Semiclassical Instanton amplitude}} \right)$$

- Why?
 - IILM includes chiral symmetry breaking and instantons relate to $U_A(1)$ anomaly
- How?
 - Compute vacuum energy density and quark condensate
 - Evaluate curvature by fitting

. . . .

Computation of IILM

repeat

Arrange instantons in four-volume (with PBC)

Calculate forces acting on instantons according to IILM action

Calculate movement of instantons (HMC & Metropolis method)

Obtain a configuration of instantons

Pick up Generate configurations

- Vacuum energy density
- Quark condensate

- Setups
 - Parameters

- Instanton density
$$n = \frac{N}{V}$$
 (N: fixed, $V = L^4$: variable)

- Current quark mass *m* (in quark propagator)
- Types
 - Quenched approximation
 - Unquenched (full)

Exps
Parameters
- Instanton density
$$n = \frac{N}{V}$$
 (N: fixed, $V = L^4$: variable)
- Current quark mass m (in quark propagator)
Sypes
- Quenched approximation
- Unquenched (full)
 $Z_{\text{IILM}} = \frac{1}{N_+!N_-!} \int \left(\prod_{i=1}^{N_++N_-} d\Omega_i d(\rho_i) \right) \exp(-S_{\text{int}}) \prod_{f=1}^{N_f} \text{Det}(\gamma_\mu D_\mu + m_f)$

Results: Vacuum energy density

- Instanton density dependence of vacuum energy density
 - Parameters: instanton density *n*, current quark mass *m*

Results: Quark condensate

- Instanton density dependence of quark condensate
 - Parameters: instanton density *n*, current quark mass *m*

Results: Vacuum energy vs. Quark condensate

- Quark condensate dependence of vacuum energy density
 - Combining two calculations through the instanton density *n*

Results: Curvature in quenched calculation

• Fitting results

Quenched					
$m \; ({\rm MeV})$	$C_1 \ ({ m MeV})$	$C_2 \ (10^{-5} {\rm MeV}^{-2})$	$\chi^2/d.o.f.$		
2.8	83(2)	-0.76(22)	6.65		
14	244(3)	-1.24(1)	12.4		
28	401(3)	-0.34(7)	18.2		

Fitting model

 $F = C_1 \left\langle \bar{q}q \right\rangle + C_2 \left\langle \bar{q}q \right\rangle^2$

Results: Curvature in unquenched calculation

• Fitting results

Unquenched					
m (MeV)	$C_1 \ ({ m MeV})$	$C_2 \ (10^{-4} \mathrm{MeV}^{-2})$	$\chi^2/d.o.f.$		
37	425(6)	3.44(39)	4.78		
54	434(2)	4.90(7)	23.0		
70	431(2)	2.93(5)	12.5		

Fitting model

Results: Quark mass dependence of curvature

Quenched				
$m \; ({\rm MeV})$	$C_1 \ ({\rm MeV})$	$C_2 \ (10^{-5} {\rm MeV}^{-2})$	χ^2 /d.o.f.	
2.8	83(2)	-0.76(22)	6.65	
14	244(3)	-1.24(1)	12.4	
28	401(3)	-0.34(7)	18.2	
Unquenched				
m (MeV)	$C_1 \ ({\rm MeV})$	$C_2 \ (10^{-4} \mathrm{MeV}^{-2})$	χ^2 /d.o.f.	
37	425(6)	3.44(39)	4.78	
54	434(2)	4.90(7)	23.0	
70	431(2)	2.93(5)	12.5	

Curvature < 0 : Quench
 → Normal breaking

• Curvature > 0 : Unquench

→ **Anomaly-driven breaking** 19/20

• Summary

- We study the role of $U_A(1)$ anomaly in dynamical chiral symmetry breaking
- Anomaly-driven breaking has been studied in the chiral effective models
- It may be seen as change of hadron properties, such as sigma and η' mass
- To see anomaly-driven breaking in other system, we generalize its definition using sign of curvature of effective potential at origin of quark condensate
- In the IILM, the curvature is positive (negative) for quenched (unquenched) calculation
- That implies the anomaly-driven breaking is taken place in unquenched IILM

Next works

- Compute the mass of mesons, for example $\sigma/f_0(500)$, η' , etc.
- Identify the difference between the quenched and the unquenched calculations
- What other evidence that anomaly-driven breaking is realizing?

Thank you for your careful attention!