From hadrons to quarks in neutron stars: -- why the quark substructure of hadrons is important

Astro condensed matter

OCD

Toru Kojo (Tohoku Univ.)

Baym-Hatsuda-TK-Powell-Song-Takatsuka, "QHC", review on neutron stars (2018)
TK, "Stiffening of matter in quark-hadron continuity" PRD (2021)
Fujimoto-TK-McLerran, "IdylliQ matter model" arXiv: 2306.04304 [nucl-th]

State of matter: overview

~ I.4 M

few meson exchange

nucleons only

ab-initio nuclear cal.

laboratory experiments

steady progress

٠

- many-quark exchange
- structural change,...
- hyperons, ⊿, ...

(d.o.f ??)

Hints from NS

 $\sim 2 M_{c}$

5n₀

2/24[Masuda+ '12; TK+ '14] (pQCD) [Freedman-McLerran, Kurkela+, Fujimoto+...] n_B

Soft to stiff is challenging:

Peak in c_s² on the lattice (QCD-like theories)

 c_s^2 found (!), while relevant d.o.f. at low μ are bosons, differing from QCD at finite μ_{B_m}

- I, Introduction
- 2, Sound velocity in nuclear & quark matter: a guide
- 3, A model for quark-hadron-duality
- 4, hyperon puzzle

pressure from $\epsilon(n_B)$

$$\mathcal{P} = n_B^2 \, \frac{\partial}{\partial n_B} \left(\frac{\varepsilon}{n_B} \right) \quad \text{energy per particle}$$

e.g.) gas of heavy particles (massive limit)

$$\varepsilon(n_B) = m_N n_B \quad \Longrightarrow \quad \varepsilon/n_B = m_N \quad \Longrightarrow \quad P = 0$$

gas of relativistic particles (massless limit)

$$\varepsilon(n_B) = a n_B^{4/3} \implies \varepsilon/n_B = a n_B^{1/3} \implies P = rac{\varepsilon}{3}$$

c_s² in purely nucleonic models

alternative **baseline**: quark EOS

relativistic pressure \rightarrow stiff EOS

can be a good starting point!?

Hadron-to-quark transitions?

Confusing point:

Switching from baryonic to quark bases

 \rightarrow a source of confusions in hybrid models (e.g. normalization of energy)

1/74

Strategy:

Keep track of quark states from nuclear to quark matter

(within a single model, e.g., percolation model, Fukushima-TK-Weise '20)

- I, Introduction
- 2, Sound velocity in nuclear & quark matter: a guide
- 3, A model for quark-hadron-duality
- 4, hyperon puzzle

Sum rules for occupation probabilities cf) [TK '21, TK-Suenaga '21]

An ideal model

2) quark distributions in a baryon remains the same (confinement persists)

3) use a special quark distribution \rightarrow models become analytically solvable

$$\varphi_{3d}(\boldsymbol{q}) = \frac{2\pi^2}{\Lambda^3} \frac{e^{-q/\Lambda}}{q/\Lambda} \qquad \qquad \hat{L} = -\boldsymbol{\nabla}^2 + \frac{1}{\Lambda^2} \qquad \hat{L}[\varphi(\boldsymbol{p}-\boldsymbol{q})] = \frac{(2\pi)^3}{\Lambda^2} \,\delta(\boldsymbol{p}-\boldsymbol{q})$$

useful for studies of the *transient regime* (d.o.f are not clear-cut)

Variational problem with sum rule constraints^{15/24}

0

- I, Introduction
- 2, Sound velocity in nuclear & quark matter: a guide
- 3, A model for quark-hadron-duality
- 4, hyperon puzzle

Hyperon Puzzle

the appearance of hyperons (or Δ ,...): adds large energy but small pressure → softening of EOS $(at 2-3n_0)$ • many species; 3Σ , 2Ξ , Λ (octet),... often used approach to pass 2Msun: introduce strong YN, YY, YNN,.. repulsion ... convergence or regularity??

I) statistical repulsion (Pauli blocking)

2) more repulsive at higher density

3) no double counting of quarks from different baryons

Multi-flavor extension

[Fujimoto-TK-McLerran, in prep.]

Hyperon suppressions

[Fujimoto-TK-McLerran, in prep.]

-> statistical repulsion on hyperons

u, d-saturation

Summary & Outlook

- For soft-to-stiff EOS: QHC is a good baseline
- Quark saturation likely occurs at $\sim 1-3n_0 \rightarrow statistical$ repulsion quantitative estimates need info of quark w.f. of hadrons in medium
- Location of cs2 peak \rightarrow info. about the quark substructure of hadrons

a new context: a link between NS EOS and hadron spectroscopy is being built.

How do quarks in exchanging mesons become real?

need quark descriptions of hadron-hadron interactions & hadron structures