三一原子X線分光で探るEN相互作用

実験、反応・構造計算、格子QCDで解き明かすハドロン分光@ELPH 藤田 真奈美 (JAEA, ASRC) 2023/11/8-9

Introduction

- ✤ Ξ atomic X-ray spectroscopy
 - Principle
 - Experimental difficulty
 - Overview
 - History and Coming experiments
 - with nuclear emulsion (J-PARC E07)
 - with "kinematical" selection
 - with Active Fiver Tracker (AFT)

*Summary

nents -PARC E07) tion r (AFT)

EN interaction

 (K^-, K^+) reaction spectroscopy

• KEK E224, BNL E885, (J-PARC E05/E70)

 \rightarrow the depth of the ΞN potential is <u>10 - 20 MeV</u>

Nuclear Emulsion experiment

• KEK E176, KEK E373

Observation of N- Xi bound system (KISO) $\rightarrow \Xi N$ interaction is <u>attractive</u>

• J-PARC E07 (2016-2017) Observation of $\Xi / \Lambda \Lambda$ hypernuclei

 $\textcircled{\Xi}$ atomic X-ray spectroscopy • The world-first challenge at J-PARC

Principle

Ξ -nucleus potential : U = V + iW

Energy shift (ΔE) $\langle \Phi^{n,l} | V | \Phi^{n,l} \rangle$ $\langle \Phi^{n,l} | H_{kin} + U_{Coul} + V | \Phi^{n,l} \rangle - \langle \Phi^{n,l} | H_{kin} + U_{Coul} | \Phi^{n,l} \rangle$

 $\langle \Phi^{n,l} | W | \Phi^{n,l} \rangle$

Width (Γ) Branching ratio (*BR*_{abs})

Experimental difficulty

Huge background from in-flight decay

"key" : selecting stopped E⁻events cleanly

Experimental method

in coincidence

Overview

done

Coming

1st experiment (J-PARC E07) Data taking status : done [2017] Stop Ξ selection : counter(Ge)-emulsion coincidence method Target : Ag, Br, C Result : M. Fujita et al., PTEP. 2022, 123D01 (2022)

2nd experiment (J-PARC E03)

Data taking status : done (10% stat.) [2021] Stop Ξ selection : "kinematical" method Target : Fe Result : Analysis is ongoing

3rd experiment (J-PARC E96)

Data taking status : soon [2023] Stop Ξ selection : **Ge-AFT coincidence method** Target : C

1st experiment (J-PARC E07)

@J-PARC K1.8

proposed by H. Tamura, K. Nakazawa, K. Imai

In-beam energy calibration method using LSO

Nucl. Instr. and Meth. A1042, 167439 (2022)

Results of J-PARC E07

Established the coincidence method using the emulsion, the Ge detectors, and magnetic spectrometers

 \rightarrow It was found that X-ray measurement would be achieved by increasing the statistical value by five times.

M. Fujita et al., PTEP. 2022, 123D01 (2022)

2nd experiment (J-PARC E03)

- Physics data taking : 2020-2021 •
- Kaon beam 1st period : 95G Kaon (10% statistics run)

proposed by K. Tanida

 Ξ stop selection : "kinematical" method

Stop or Not By Monte Carlo Simulation

Results of J-PARC E03

Y. Ishikawa, Doctoral thesis 2022 Tohoku Univ.

 $S/\sqrt{(S+N)}$ of Fe Ξ X-rays via the Fe(KK) reaction was evaluated. Rx < 0.19 @90%C.L. smaller than the estimation.

 \rightarrow It was found that 3 σ peaks would be observed by reducing the BG level to 1/8 or less.

 $N_{Xray} = N_{stopped \Xi^{-}} \times R_X \times \epsilon_{HBX}$ Intensity of Xray per stopped Ξ

Cf. $Rx \sim 0.3$ (estimation)

Analysis Upgrade is on-going by Yamamoto-san

Current status

	1st try (E07)		2nd try (E03)
Stop E selection	counter-emulsion coincidence method		"kinematical" method
	• PTEP. 2022, 123D01 (2022)	•	Y. Ishikawa, Doctoral thesis, Tohoku
	 Succeeded in significantly reducing 		Univ. (2022)
	BG, but X-ray was not observed.	•	Analysis is ongoing.
Result	• Necessary to improve the issue where	•	Room for improvement in SN by
	the Ξ track between SSD and		brushing up event selection.
	emulsion is not connected due to	•	Should be used with some detectors
	distortion of emulsion.		which can identify stopped Ξ .

Need a counter detector to select stopped Ξ !

3rd experiment (J-PARC E96)

Ge-AFT coincidence method

Target Xray : $C \equiv$ atomic Xrays The E70 AFT is not optimized to stop Ξ .

Physical motivation

S. H. Hayakawa *et al.*, PRL, **126**, 062501(2019).

According to the theoretical prediction, absorption is dominant in the 3D orbit

In the IBUKI event, Absorption occurred in the 2P orbital, which is closer to the nucleus!

The Ξp - $\Lambda \Lambda$ coupling is weak?

Ξ⁻ C atomic X-rays

Energy shift (ΔE) and Width (Γ)
 Theoretical predictions are strongly model dependent

	ESC potential	HAL-QCD Potential
$\Delta E (keV)$	~1100	~90
Γ (keV)	~2000	~6

X-ray Intensity
 Series X-ray observation required

Transition	ESC potential	HAL-QCD Potential
4-→3	~40%	
3→2	A few %	~40%

E96 : Commissioning & physics run

•E96 core members :

K. Kamada, F. Oura, C. Son, R. Imamoto, H. Tamura (Tohoku Univ.)

M. Ukai (KEK) T.O. Yamamoto, M. Fujita (JAEA)

Run at the same time with J-PARC E70 (Ξ hyper nuclear spectroscopy)

Commissioning : done @ 2023 June

Physics run : coming soon

- * The "key" is how to select stopped Ξ .
 - Counter-Emulsion coincidence method (J-PARC E07)
 - * "Kinematical" method (J-PARC E03)
 - Ge-AFT coincidence method (J-PARC E96)
 - \rightarrow expect the world's first carbon Ξ atomic X-ray observation

* The Ξ Atomic X-ray spectroscopy is a powerful method to approach the Ξ N interaction.

M. Fujita et al., PTEP. 2022, 123D01 (2022)

Y. Ishikawa, Doctoral thesis, Tohoku Univ. (2022)

Back up

Twin A hypernucleus events @KEK E176

#10-09-06 (Yokohama)

S. Aoki et al. Prog. Theor. Phys. 89, 493 (1993)

> ✓ Cによる capture ✓ ${}^{4}_{\Lambda}$ H(確定) と ${}^{9}_{\Lambda}$ Be(most probable)が生成 $\rightarrow B_{\Xi^{-}} = 0.82 \pm 0.17 \text{ MeV}$

 $^{9}_{\Lambda}$ Be

(most probable)

#13-11-14

 $+^{12} \mathrm{C} \rightarrow^{4}_{\Lambda} \mathrm{H} +^{9}_{\Lambda} \mathrm{Be}$

(most probable)

 $+^{12}$ C

C原子

S. Aoki et al. Phys. Lett. B 355, 45 (1995)

✓ most probableはCによるcapture

✓ 生成A核の基底or励起状態は決定できず

✓⁴_ΛH(基底)と⁹_ΛBe(励起)と仮定すると

 $\rightarrow B_{\Xi^{-}} = 0.82 \pm 0.14 \text{ MeV}$

反応を一意に特定できなかった

KISO @KEK E373

K. Nakazawa et al., PTEP 2015, 033D02 (2015)

・ground stateなら $B_{\Xi^{-}} = 3.87 \pm 0.21 \text{ MeV}$ ・excited stateなら $B_{\Xi^{-}} = 1.03 \pm 0.18 \text{ MeV}$

"The first evidence of a deeply bound state of Ξ -14N system,"

 ΞN is attractive

IBUKI @J-PARC E07

$B_{\Xi^{-}} = 1.27 \pm 0.21 \text{ MeV}$

IBUKI : a Coulomb-assisted $1p_{\Xi^-}$ **state**

IRRAWADDY/ KINKA @E07/E373

#IRRAWADDY

10 µm

$\Xi^- + {}^{14}N \rightarrow^5_{\Lambda}He + {}^5_{\Lambda}He + {}^4He$

M. Yoshimoto et al.,

Prog. Theor. Exp. Phys 2021, 073D02 (2021)

#KINKA

$\Xi^- + {}^{14}N \rightarrow^9_{\Lambda}Be + {}^5_{\Lambda}He + n$ ・⁹ Beがground stateなら $B_{\Xi^{-}} = 8.00 \pm 0.77 \text{ MeV}$ ・ $^{9}_{\Lambda}$ Beがexcited stateなら $B_{\Xi^-} = 4.96 \pm 0.77 \text{ MeV}$

炭素E原子X線測定

C = atomic X-ray measurement @ E07

0.1 - 1 MeV領域で幅を仮定してピーク探索 \rightarrow No evident peak

 $\Xi^{-}p \rightarrow \Lambda\Lambda$ に関する議論

•X線yield (N_{Xray})のupper limitによってE1遷移 の分岐比BRのupper limitが評価できる

$$BR(E1,3D \to 2P) = \frac{N_{Xrays}}{N_{\Xi capture} \times P_{\Xi}(3D) \times \epsilon_{Ge}}$$

•BRによって吸収の幅^{3D} (~W₀)のlower limitが評価できる

$$BR(E1,3D \to 2P) = \frac{\Gamma_{E1}^{3D \to 2P}}{\Gamma_{E1}^{3D \to 2P} + \Gamma_{abs.}^{3D}}$$

BRからW₀の下限値を議論するためには、実験感度を1桁向上する必要がある (W₀が0.1 MeV程度と仮定した場合)

解決すべき・要求される事項

Yield ratio

- •10-200 keVエネルギー領域での測定
- •立体角の拡大
- •高分解能
- •標的厚/減速材の最適化
- •静止 王選択法の改良

測定実現に向けた開発事項

・X線検出器として CdTe半導体検出器の導入

[特徴]

✓ 数 keV - 1 MeVに感度
 ✓ γ吸収効率が高い
 ✓ 常温で動作できる
 ✓ Ge,Siに比べて若干E分解能が悪い

✓ Polarization

新たな静止王事象選択法の検討

✓崩壞π検出器

✓ Fiber Tracker (AFT) + degrader

	Ge検出器@E07	CdTe(テルル化カドミウム)検
-感度領域	100 - 1400 keV	数 keV - 1 MeV
解能	2 keV(FWHM) @ 154 keV	2.7 keV(FWHM)@ 60 keV
亦作	窒素冷却	常温可
本角	10数%	50 %**

*アクロラド社HPより

**1cm2素子*16個*4基板を標的から3cmの距離に置いた場合

エネルギ

E分

 $\frac{1}{2}$

K-

CdTe検出器テスト

アクロラド社製 1cm*1cm

