High resolution missing-mass spectroscopy of E hypernuclei at J-PARC

ELPH研究会

1. 京都大学大学院理学研究科 2. 原子力研究開発機構先端基礎研究センター

江端健悟^{1,2}(Kengo EBATA) for J-PARC E70 collaboration

2023/11/9

Introduction : Strangeness Physics

→ more general Baryon-Baryon interaction

S=-2 Physics Experiments

Emulsion

(NAGARA[1], KISO, IRRAWADDY(¹⁴N-Ξ), ...)

isospin and spin dependent interaction ?

\rightarrow High statistical & high resolution spectroscopy for Ξ hypernuclei

[1] H. Takahashi *et al.*, Phys. Rev. Lett. **87**, 212502 (2001).
[2] K. Nakazawa *et al.*, Prog. Theor. Exp. Phys. **2015** 033D02 (2015).
[3] S. Acharya *et al.*, (ALICE collaboration) Phys. Rev. Lett. **123**, 112002 (2019).

• Femtoscopy in heavy ion collision [3]

 $p-\Xi$ is attractive.

Missing-Mass Spectroscopy for E hypernuclei

Missing-Mass Spectroscopy for E hypernuclei

accuracy of peak position \rightarrow ~100 keV, decay width \rightarrow a few hundred keV

 \rightarrow Establish spectroscopy for Ξ hypernuclei

K1.8 beamline in J-PARC

J-PARC E70 Experiment

S-2S detectors @ K1.8 area

S-2S detectors @ K1.8 area

First Commissioning for S-2S

in June 2023, we had first commissioning.

 detector check (PID counters, AFT) •Beam through (1.2, 1.4 GeV/c, K^+/π^+)

1.15

1.4

Beam Through w/ S-2S tracking

(Runge-Kutta)

First Commissioning for S-2S

Beam through data analysis w/ DNN (Machine Learning)

Outlook

- J-PARC E70

- Second Commissioning (From 2024 Mar)
- Physics run \rightarrow 20 days,
 - Ξ hypernuclei ~ 100 events

- Machine Learning analysis for momentum

 $\mathsf{DNN}\to\mathsf{GNN}$

- After E70 (12ΞBe)

- E75 (7ΞH, Phase1 -> 5ΛΛΗ, Phase2)

- 10ΞLi

Summary

- S = -2 Physics $\rightarrow \Xi N$, $\Lambda\Lambda$ int., more general baryon interactions.
- J-PARC E70 = Spectroscopy of Ξ hypernuclei (12 Ξ Be)

 $-\Delta M \sim 2 \text{ MeV}/c^2$

- Establish Spectroscopy for Ξ hypernuclei for the future
- June in 2023, First Commissioning in S-2S.

We got detectors commissioning and beam through data.

- After E70 (12ΞBe)
 - E75 (7 Ξ H \rightarrow 5 $\Lambda\Lambda$ H)
 - 10ΞLi
 - spin & isospin dependent interaction of ΞN

BACK UP

Momentum analysis of K1.8 & S-2S spectrometer

Backward Transfer Matrix Method for Momentum analysis

How is momentum measured ?

By Using Optical Transfer Matrix, we get momentum from x, y (positions), u, v (angles). One of conventional method -> K1.8 Spectrometer

$$\begin{pmatrix} x_1 \\ y_1 \\ u_1 \\ v_1 \\ \delta_1 \end{pmatrix} = \begin{pmatrix} \cos\theta & \rho\sin\theta & 0 & 0 & (1 - \cos\theta)\rho \\ -\sin\theta/\rho & \cos\theta & 0 & 0 & \sin\theta \\ 0 & 0 & 1 & \rho\theta & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \\ u_0 \\ v_0 \\ \delta_0 \end{pmatrix} \leftarrow \frac{dx}{dz} \\ \leftarrow \frac{dy}{dz} \\ \frac{p - p_0}{p_0}$$

Runge-Kutta Method for Momentum analysis

Runge-Kutta method

One of conventional method

Tracking according to the EOM on magnetic field of spectrometer, momenta are calculated.

Momentum analysis for S-2S with Machine Learning

Momentum Reconstruction : hit position \rightarrow momentum

Conventional methods

• Runge-Kutta method \rightarrow Correction by phenomenological functions after reconstruction.

■Backward Transfer Matrix method → Difficult in large momentum acceptances.

Machine Learning (ML method)

- \rightarrow •automatical correction. (especially higher order correction)
 - more flexible analysis,

which for example, reconstruct momentum directly from hit of drift chambers.

 \rightarrow High efficiency & High resolution momentum analysis.

S-2S Deep Neural Network (DNN) analysis

ML analysis for real data is feasible $??? \rightarrow$ use Beam Through events of commissioning run in June 2023

S-2S Deep Neural Network (DNN) analysis

J-PARC E75 Experiment (Phase-1)

Phase-1 product ${}^{7}_{-}H$ via ${}^{7}Li(K^{-}, K^{+})$ reaction and measures cross section of ${}^{7}_{-}H$.

decay π^- spectroscopy for ${}^{5}_{\wedge\wedge}$ H. (Phase-2)

