2023 ELPH研究会C035

Production of double-strangeness systems near the threshold in the ${}^{12}C(K^-, K^+)X$ reaction at 1.8 GeV/c

WooSeung Jung(Korea University) for the J-PARC E42 Collaboration

Outline

150

-50

-200

-250 -250 -200 -150 -100

- Production and decay of the double-strangeness systems from ${}^{12}\tilde{E}^{250}_{(K^-, K^+)X}$ involving double hypern uclei and H-dibaryon
- J-PARC E42 with HypTPC collected $\begin{array}{c} 2\\ 0.3 \text{ M} (K + K^+) \text{ reaction } \pi^- \\ \text{events data in 2021} \\ 0 \end{array}$

0.5

-0.5

• Preaiminary results on the E42 detector performance and binding energy spectra relative to Ξ^- +¹¹B system.

150

200

100

)0 250 Z [mm]

H-dibaryon search via ${}^{12}C(K^-, K^+)$ reaction

aswel1@korea.ac.kr

- SU(3) flavor-singlet dibaryon consisting of uuddss
- Collected 0.3 M (K^-, K^+) reaction events data in 2021

First measurement of all charged decays from ${}^{12}C(K^-, K^+)X$ reaction with high statistics

• Processes of double-strangeness exchange in ${}^{12}C(K^-, K^+)X$ reaction

H(2250) H(2250) Simulation 1.0 μb/sr (Γ_H=0) 222 2.24 2.26 2.28 2.3 2.32 2.34 2.3 M(Λ Λ)(GeV/e²)

Study of Ξ^- nucleus Potential

 Ξ^- -nucleus Potential

where,

$$U_{\Xi^{-}} = [V_0^{\Xi} + iW_0^{\Xi}g(E)]f(r)$$

 $V_{0\Xi}$: Strength of the potential

 $W_{0\Xi}$: Absorption processes ($\Xi^- p \to \Lambda \Lambda, \Xi^- p \to \Xi^0 n$)

• Past experimental data on low-energy $\Xi^- p$ elastic, $\Xi^- p \to \Lambda \Lambda$ cross-section

The total cross-section of $\Xi^- p \to \Lambda \Lambda$ and the width of Ξ^- state in nuclear matter

$$\sigma_{\Xi^-p \to \Lambda\Lambda} = 4.3^{+6.3}_{-2.7} \ mb$$
, $\Gamma_{\Xi^-} \sim 3 \ MeV$

*J.K. Ahn et al. / Physics Letters B 633 (2006) 214–218

• Recent emulsion experiments(Ξ^{-} –¹⁴ N bound state):

J-PARC E07(IRRAWADDY, IBUKI), KEK E373 (KISO)

-> Attractive Ξ^- nucleus potential with a weak $\Xi N-\Lambda\Lambda$ coupling

Completed

M. Yoshimoto, Prog. Theor. Exp. Phys.* **2021, 073D02. **S. H. Hayakawa et al.*/ *Phys. Rev. Lett.* 126, 062501 (2021).

(KEK E224)

Study of Ξ^- nucleus Potential($V_{0\Xi}$)

• Reinvestigation of the Ξ^- -nucleus potential using the past data

BNL-E885 : $V_{0\Xi} \sim -14$ MeV by neglecting the $W_{0\Xi}$

BNL-E906 ${}^{9}Be(K^{-}, K^{+})$ reaction at 1.8 GeV/*c* spectrum was studied.

*T.Harada and Y. Hirabayashi, Phys. Rev. C 103, 024605 (2001)

*M. Kohno and S. Hashimoto, Prog. Theor. 123, (2010).

Experiments Ξ^- Hypernuclear Spectroscopy

• Search for bound Ξ^- hypernuclei in the excitation-energy spectrum for ${}^{12}C(K^-, K^+)\Xi^-X$ reaction

• E42 is sensitive to determine $W_{0\Xi}$ by decomposing the inclusive spectrum into $\Xi^-p \rightarrow \Lambda\Lambda$ conversion and other processes by HypTPC.

 (K^-, K^+) reaction at 1.8 GeV/c

- Differential Cross-section Measurement of $K^-p \rightarrow K^+\Xi(1535)^-$
- Ξ^- Polarization Measurement
- Multi-particle Emission in ${}^{12}C(K^-, K^+)$

 (K^-, p) reaction at 1.8 GeV/c

- Cross-section Measurement of $\mathbf{p}(K^-, p)K^*(892)X$ and ${}^{12}\mathbf{C}(K^-, p)K^*(892)X$
- Kaonic Nucleus Search by ${}^{12}C(K^-, p)X$

Hyperon Spectrometer

Spatial and Momentum Resolutions of HypTPC

- Momentum resolution \Re as measured with π^- beam-through data of various momenta
- Spatial resolution is parameterized with intrinsic and angular dependent terms.

Particle Identification by Hyperon Spectrometer

HypTPC dE/dx

- $< dE/dx >_{20\% truncated} vs p/z$ for reconstructed tracks of ${}^{12}C(K^-, K^+)$ reactions
- $\sigma_{\langle dE/dx \rangle} / \langle dE/dx \rangle \sim 20\%$ for the range 0.40 < $p_T < 0.45 \text{ GeV}/c$

HTOF Time-of-flight

• Flight length about 200 ~ 500 mm, $\sigma_t \sim 120$ ps for π^-

Preliminary Λ / Ξ^- reconstruction via the $CH_2(K^-, K^+)X$ reaction

Expected Yield and Reconstructed $\Lambda\Lambda$ Production Events

Reconstructed Λ mass distribution for $\Lambda\Lambda$ production

- 5,100 ΛΛ events were expected with 10 μb/sr cross section for ¹²C(K⁻, K⁺ΛΛ) reactions. (p_{K⁺} > 0.5 GeV/c)
- ~ 10,000 $\Lambda\Lambda$ events were reconstructed.
- Acceptance study is in-progress.

800

700

600

0

0

200

400

600

 $-B_{\Xi^{-}}^{800}(MeV/c^{2})^{1000}$

14

Inclusive binding energy spectrum is decomposed ۲ into Ξ^{-} escaping and conversion spectra.

Ξ^- escaping process

 $^{-12}C(K, K^+)\Xi$

Exclusive Binding-energy Spectra for Double Λ hyper-nucleus Study

- J-PARC E42 is searching the H-dibaryon via ${}^{12}C(K^-, K^+)$ reaction. We collected approximately 0.3M (K^-, K^+) reaction events.
- E42 would be a first measurement of all charged decays from ${}^{12}C(K^-, K^+)X$ reaction with high statistics.
- E42 can decompose $\Xi^- p \to \Lambda \Lambda$ conversion spectrum from the ${}^{12}C(K^-, K^+)X$ inclusive missing-mass spectrum. So E42 has high sensitivity for $W_{0\Xi}$ determination.
- E42 data analysis is on-going. We will soon be showing finalize results.

Backup

aswel1@korea.ac.kr

18

E42 Spectrometer Acceptance

aswel1@korea.ac.kr

 고려대학교

 KOREA UNIVERSITY

- $B_{\Xi^-} = M_X M(\Xi^-) M(^{11}B)$ where $M_X : {}^{12}C(K^-, K^+)X$
- Inclusive spectrum decomposed into each reaction.

aswel1@korea.ac.kr

20

Preliminary Normalized Spectra of ${}^{12}C(K^-, K^+)$ reactions

