Near-threshold hadron scattering using new parametrization of amplitude

Tokyo Metropolitan University

Katsuyoshi Sone Tetsuo Hyodo

Background

Exotic hadrons \Box $T_{cc}, X(3872), f_0(980), a_0, P_c, Z_c$

Internal structure

Scattering length a

For near-threshold exotic hadrons, channel couplings are important.

Unstable exotic hadron near the threshold of channel 2

 \rightarrow Flatté amplitude has been used[1].

Scattering length a_F has been determined by the Flatté amplitude[2].

We discuss the behavior of cross section near the threshold in terms of *a*.

[1] R.Aaij et al. [LHCb], Phys. Rev. D 102, no.9, 092005 (2020)

[2] V. Baru et al. Eur. Phys. J. A, 23, 523-533 (2005)

General form : EFT amplitude

The general form of the scattering amplitude is derived from the optical theorem.

$$f^{-1} = \begin{pmatrix} M_{11}(E) - ip(E) & M_{12}(E) \\ M_{12}(E) & M_{22}(E) - ik(E) \end{pmatrix}$$

One of the general solutions of the above equation derived from EFT.

EFT amplitude[3] up to first order of k.

$$f^{EFT} = \left\{ \frac{1}{a_{12}^2} - \left(\frac{1}{a_{22}} + ik\right) \left(\frac{1}{a_{11}} + ip_0\right) \right\}^{-1} \begin{pmatrix} \left(\frac{1}{a_{22}} + ik\right) & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & \left(\frac{1}{a_{11}} + ip_0\right) \end{pmatrix}$$

The EFT amplitude has three parameters a_{11} , a_{12} , a_{22} near the threshold.

[3]T.D.Cohen et al., Phys. Lett. B 588 (2004) 57-66

Flatté amplitude

 f^{I}

The Flatté amplitude for two channel case

$$F = h(E) \begin{pmatrix} g_1^2 & g_1g_2 \\ g_1g_2 & g_2^2 \end{pmatrix}$$

 g_1, g_2 : Real coupling constants
 E_{BW} : Bare energy

The Flatté parameters

The Flatté amplitude satisfies the optical theorem with channel couplings. The Flatté amplitude has <u>the threshold effect</u>.

$$h(E) = -\frac{1}{2} \frac{1}{E - E_{BW} + i g_1^2 p(E)/2 + i g_2^2 k(E)/2}$$

 f_{11}^F, f_{22}^F can be written as the effective range expansion in k.

$$f_{11}^F, f_{22}^F \propto \left(-\frac{1}{a_F} + \frac{1}{2}r_Fk^2 - ik + O(k^4)\right)^{-1} \qquad a_F : \text{Scattering length} \\ r_F : \text{Effective range}_4$$

Problem of Flatté amplitude

 $1/f_{11}^F$ up to order k^1 can be written only by two parameters $R, \alpha[2]$.

$$f_{11}^{F} = \frac{g_{1}^{2}}{2E_{BW} - ig_{1}^{2}p_{0} - ig_{2}^{2}k} = \frac{1/R}{\alpha p_{0}/R - ip_{0}/R - ik} \qquad \alpha = \frac{2E_{BW}}{g_{1}^{2}p_{0}} \qquad R = \frac{g_{2}^{2}}{g_{1}^{2}}$$

We find $1/f_{22}^F$ up to k^1 can also be written only by two parameters R, α .

-
$$2$$

Momentum $k(E)$
- 1
Momentum $p(E)$

Exotic hadron

$$f_{22}^{F} = \frac{g_{2}^{2}}{2E_{BW} - ig_{1}^{2}p_{0} - ig_{2}^{2}k} = \frac{1}{\alpha p_{0}/R - ip_{0}/R - ik}$$

 p_0 : channel 1 momentum at E = 0

 $f^F(g_1^2, g_2^2, E_{BW})$ three parameters $[f^F(R, \alpha)$ two parameters(near the threshold)

 $\stackrel{\frown}{}$ Some constraint are imposed to the Flatté amplitude near the threshold.

[2] V. Baru et al. Eur. Phys. J. A, 23, 523-533 (2005)

Comparison

What is the difference between the EFT and Flatté ?

EFT amplitude does not reduce to Flatté amplitude directly

New parametrization amplitude

We construct the new representation including EFT and Flatté.

$$(f^{EFT})^{-1} = \begin{pmatrix} -\frac{1}{a_{11}} - ip_0 & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & -\frac{1}{a_{22}} - ik \end{pmatrix} \qquad (f^G)^{-1} = \begin{pmatrix} -\frac{1}{A_{22}} \frac{1}{\gamma} - ip_0 & \frac{1}{A_{22}} \frac{\sqrt{\epsilon - \gamma}}{\gamma} \\ \frac{1}{A_{22}} \frac{\sqrt{\epsilon - \gamma}}{\gamma} & -\frac{1}{A_{22}} \frac{\epsilon}{\gamma} - ik \end{pmatrix}$$

 A_{22} : scattering length of channel two in the absence of channel couplings

Property

The scattering length

The scattering length *a* is obtained from the effective range expansion

$$f_{22}(k) = \frac{1}{-\frac{1}{a} + \frac{r}{2}k^2 + O(k^4) - ik}$$

a : the scattering lengthr : the effective range

• Flatté scattering length a_F

• General scattering length a_G

$$a_F = \frac{1}{\frac{1}{A_{22}} + i\epsilon p_0}$$

$$a_{G} = A_{22} \left(\frac{\frac{1}{A_{22}} + i\gamma p_{0}}{\frac{1}{A_{22}} + i\epsilon p_{0}} \right)$$

When a pole is near the threshold, the pole position is related to a

Pole position
$$k \sim i/a$$

Comparison of the cross section

We study the behavior of the scattering cross section near the threshold when the scattering length is stable.

$$\sigma_{ij} = \frac{p_j}{p_i} \int f f^* d\Omega = 4\pi \frac{p_j}{p_i} |f_{ij}|^2$$

We focus on σ_{11} and σ_{21}

The Flatté amplitude up to first order of k.

The Flatté cross sections near the threshold σ_{21}^F , σ_{11}^F are determined only by a_F .

Comparison of the cross section

The General amplitude up to first order of k.

The general cross section σ_{11}^G is written only by a_G . However, σ_{11}^G depends on three parameters. \implies When a_G is fixed, σ_{21}^G is stable, but σ_{11}^G changes for variation of γ . 11

Cross section

We calculate σ_G varying γ for same value of scattering length:

 $a_G = a_F = +1.0 - i1.0$ [fm]

This a_G makes the sharper peak below the threshold in σ_{21} .

(1)
$$A_{22} = 3.4 \text{[fm]}, \epsilon = 0.3, \gamma = 0.05$$

(2) $\gamma = 0.0$ (Flatté)
(3) $A_{22} = 1.9 \text{[fm]}, \epsilon = 0.2, \gamma = -0.01$
(4) $A_{22} = 0.27 \text{[fm]}, \epsilon = -1.1, \gamma = -10.0$

However, σ^{G} changes significantly for same a_{G} . In particular, when $\epsilon < 0$, the dip emerge below the threshold[6].

[6]Dong, Xiang-Kun and Guo, Feng-Kun and Zou, Bing-Song, Phys. Rev. Lett.126, 15 (2021)

Cross section

We calculate σ_G varying γ for same value of scattering length:

 $a_G = a_F = -1.0 - i1.0$ [fm]

This a_G makes the shaper cusp at E = 0 for σ_{21} .

(1)
$$A_{22} = -3.4$$
[fm], $\epsilon = 0.3$, $\gamma = 0.05$
(2) $\gamma = 0.0$ (Flatté)
(3) $A_{22} = -1.9$ [fm], $\epsilon = 0.2$, $\gamma = -0.01$
(4) $A_{22} = -0.27$ [fm], $\epsilon = -1.1$, $\gamma = -10.0$

However, σ^{G} changes significantly for same a_{G} . In particular, when $\epsilon < 0$, the dip emerge near the threshold.

