Determination of the proton charge radius during the ULQ² experiment

Clement Legris, on behalf of the ULQ² collaboration

RARiS Tohoku University

Contents

- I. Proton charge radius puzzle
- II. Determination of the proton charge radius with electron scattering

III. The ULQ² experiment

IV. Data taking and analysis

I. Proton charge radius puzzle

2024/10/29

II. Determination of the proton charge radius with electron scattering

Electric form factor and proton charge radius

Feynman diagram of the leading-order of the electron-proton scattering.

2024/10/29

Specifications of the ULQ² experiment Ultra Low Q²

Absolute cross-section measurement

Simultaneous detection of e-p and $e^{-12}C$ scattering with a CH_2 target (Experimental data).

Absolute cross-section measurement

Previous experiments (e-p)

- □ A1 experiment (2010):
 - Medium energy (180-855 MeV)
 & many angles (15-130°)
 → 0.004 ≤ Q²[(GeV/c)²] ≤ 1
 - ➡ Liquid H cell & metal walls \rightarrow large BG
 - ➡ Relative cross-section measurement

J. Bernauer, PhD thesis.

□ PRad experiment (2019):

- → High energy (1.1 & 2.2 GeV)
 & small angles (0.7 7.0°)
 → 0.0002 ≤ Q^2 [(GeV/c)²] ≤ 0.06
- ➡ Elastic/inelastic e-H scattering ...
- ➡ Absolute normalization to e-e scattering

W. Xiong *et al.*, Nature **575** (2019) 147.

Form factor discrepancy

□ Electron scattering: Proton electric form factor

J. C. Bernauer, EPJ Web of Conf. 234, 01001 (2020)

 $G_{std}(Q^2) = \frac{1}{\left(1 + \frac{Q^2}{\Lambda}\right)^2}$ with $\Lambda = 0.71 \, (\text{GeV/c})^2$

Different Q^2 -dependencies of the electric form factor

→ Mainz (2010):
$$r_p = (0.879 \pm 0.008)$$
 fm
→ PRad (2019) : $r_p = (0.831 \pm 0.014)$ fm

 3σ discrepancy!

At least 1 experiment is wrong!

- → Need data at low Q^2 : UL Q^2 !
- ➡ Most reliable measurement!

III. The ULQ² experiment

Spectrometer 1 — Data taking

Spectrometer 2 — Target monitor

<u>Measurement in the focal plane:</u>

- \Box ULQ² experiment uses very low energy electrons.
 - \implies Strong multiple scattering: $\langle \theta_{MS} \rangle \propto \frac{1}{P'}$
 - ➡ Impossible to determine the path of the electrons.
- ❑ Single measurement of the electron position in the focal plane.
- Connected to the target chamber and under vacuum (< 1 mPa).

<u>Measurement in the focal plane:</u>

- □ Electrons focused in the focal plane depending on their momentum p and horizontal scattering angle θ .
- $\Box (P', \theta) \text{ determined from the } (x, y) \text{ position of the electrons on the detectors placed in the focal plane.}$
- □ To resolve e+p and e+C scattering peaks with Q^2 = 0.0003 (GeV/c)², Momentum resolution: $\sigma_p = \frac{\Delta P}{P} < 10^{-3}$

Single Sided Silicon Strip Detectors (SSDs):

- Developed with the J-PARC muon g-2/EDM collaboration.
- 2 detectors each made of 2 x 512 channels on each spectrometer.
- Located in the focal plane of the spectrometers.
- Channel width: 0.19 mm, thickness: 0.32 mm.

2024/10/29

IV. Data taking and analysis

Current status

Commissioning of the twin spectrometers:

- ➡ COMPLETED!
- **D** Determination of the detector efficiency:
 - ➡ Data taking completed!
 - ➡ Analysis underway

□ Actual cross-section measurement:

- → 18 points with $3 \times 10^{-4} \le Q^2 \le 8 \times 10^{-3} \, (\text{GeV/c})^2$
- Data taking completed!

23/05: 50 MeV24/01: 50 MeV23/09: 42 MeV24/03: 50 MeV23/10: 50 MeV24/04: 60 MeV23/10: 21 MeV24/10: 60 MeV

2024/10/29

2024/10/29

2023/08/01

PAC meeting 2023

2024/10/29

Analysis
$$\left(\frac{d\sigma}{d\Omega}\right)_{e-H} = \frac{N_{e-H}/N_{e-C}}{N_H/N_C} \left(\frac{d\sigma}{d\Omega}\right)_{e-C}$$

Simulation

P. Banerjee *et al.*, SciPost Phys. **9**, 027 (2020).

□ McMule for e-H & e-C simulation of LO, NLO (NNLO if necessary)

➡ Marco's talk on Thursday

Geant4 simulation

Simulation

P. Banerjee *et al.*, SciPost Phys. **9**, 027 (2020).

□ McMule for e-H & e-C simulation of LO, NLO (NNLO if necessary)

➡ Marco's talk on Thursday

Simulation

□ Analysis going-on:

- ➡ Experimental data analysis well-advanced
- ➡ Simulation to be improved

➡ Results in 2025

Thanks to all ULQ² collaborators

D. Abe¹, R. Danjo¹, O. Fujishima², T. Goke¹, Y. Honda¹, Y. Ishikura¹, K. Ishizaki¹, K. Haak³, K. Hotta¹, R. Kagami⁴, H. Kikunaga¹, H. Kobayashi⁴, M. Kohl⁵, C. Legris¹, Y. Maeda², Y. Maeda⁴, D. Marchand⁶, S. Miura¹, M. Miyabe¹, E. Morris⁷, M. Mitsui², T. Muto¹,
I. Nagasawa¹, Y. Nagano⁸, K. Nanbu¹, R. Obara¹, T. Ohnishi⁹, S. Sasaki¹, K. Shibata¹, T. Suda¹, M. Tachibana⁴, K. Takahashi¹, D. Taki¹, T. Tamae¹, O. Tokiyasu¹, K. Tsukada⁴, E. Voutier⁶, T. Yamauchi¹ and K. Yoshimoto¹

¹Tohoku Univ., RARiS
²Miyazaki Univ., Dept. of Applied Phys.
³MSU, FRIB
⁴Kyoto Univ., ICR
⁵Hampton Univ., Phys. Dept.
⁶CNRS/IN2P3, IJCLab
⁷Univ. of Eat Anglia
⁸Yamagata Univ.
⁹RIKEN Nishina Center

THANK YOU FOR YOUR ATTENTION

Current experiments (μ^{\pm} -p)

□ MUSE experiment (PSI):

- ⇒ $e^{\pm}, \mu^{\pm} p$ at 115, 153, 210 MeV/c & wide angle range (20-100°) → $0.002 \le Q^2 [(\text{GeV/c})^2] \le 0.08$
- \rightarrow Liquid H₂ target

- ⇒ $\mu^{\pm} p$ at very high energy (100 GeV) & very small angles (less than 0.1°) → 0.001 ≤ $Q^2[(\text{GeV/c})^2] \le 0.04$
- Recoiled proton detection with a high pressure TPC

Absolute cross-section measurement:

- ➡ Proton charge radius
- ➡ TPE measurement
- ➡ Lepton universality study

LEES 2024

Monitor

Veto

~ 100 cm

E. Cline *et al.*, SciPost Phys. Proc. 5, 023 (2021).

Straw-Tube Tracker (STT)

34

¹²C cross section

□ Several measurements of the electric form factor of ¹²C with electron scattering

Precise measurement of the carbon charge radius with $\frac{\delta r_C}{r_C} < 10^{-3}$ with μ^{12} C

W. Ruckstuhl et al., Nucl. Phys. A430 (1984) 685-712

Determination of the electric form factor of 12 C at low Q^2 with 10^{-3} accuracy

¹²C vs natural C ^{nat} $C = 98.9\%^{12}C + 1.1\%^{13}C$

□ Very small effect of ${}^{13}C$ ~ order of 10^{-4} in the context of the ULQ2 experiment

Detector efficiency

□ Spectrometer momentum acceptance: ~10%

□ Use of a 2-mm-thick C target $\rightarrow \Delta E_{loss} = 2.2 \text{ MeV}$

□ With E=10 MeV, $\frac{\Delta E_{loss}}{E} \sim 20\% \rightarrow$ completely covers the detector surface

Detector efficiency

Spectrometer central angle

Q² determination

- **G** From x_d , we get δ but not directly P'...
- □ The beam energy derived from the current of upstream magnets is not precise enough ...
- **\Box** To get E and *P'*, use of *C* and H peaks:

$$R \equiv \frac{P'_{C}}{P'_{H}} \sim \frac{1 + \frac{x_{C}}{P_{C}}}{1 + \frac{x_{C}}{(x_{d} \mid \delta)}}$$

Determination of the beam energy directly from the experimental data!

Precise determination of Q^2 !