

Proton Charge Radius from Electric Form Factor Measurements at Low Q²

Miha Mihovilovic for A1 Collaboration U Ljubljana and JSI

Motivation - The proton radius problem

• The "Proton radius puzzle" - a 6σ discrepancy in the r_p measurements.

Hypotheses for competing r_p values

- Inconsistent experimental results:
 - different Q² ranges of data.
 - different experimental uncertainties.
 - hidden systematics (luminosity determination).
 - hidden backgrounds (cryogenic depositions).

- Differences in the interpretation of experimental results:
 - not knowing the true functional form for G_e^p.
 - use of different models (model bias) .
 - incomplete models (neglected contributions of higher-order moments).
 - inconsistent use of experimental data (different Q² ranges).
 - ignored model-dependent relative normalizations between data.

Reexamination of first extraction of r_p

- First determination of proton charge radius done by Hand in 1963.
- Two step fitting technique was applied: quadratic fit up to 3 fm⁻², linear fit up to 1 fm⁻²

Reexamination of first extraction of r_p

Mistake in an analysis led to a smaller value for the radius.

Reanalysis of original measurements gives results consistent with CODATA '18.

Proton's charge form-factor

- In 2013 data available only for Q² > 0.004 (GeV/c)².
- More data at even smaller Q² needed!

The idea of ISR Experiment

The ISR experiment

- Full experiment done in August 2013 + additional beam time in 2017.

The ISR Simulation

- Based on standard A1 framework.
- Detailed description of apparatus.
- Exact calculation of the leading order diagrams:

 The NL-order virtual and real corrections included via effective corrections to the cross-section.

Results

Existing apparatus limited reach of ISR experiment to E' ~ 130 MeV.

Analysis of cross-sections

- Determination of the radius directly from the measured cross-sections.
- Small-energy data less sensitive to radius. 195 MeV data excluded.
- Analysis based on a specific form factor model.

$$G_E^p(Q^2) = n \left(1 - \frac{r_p^2}{6 \, (\hbar c)^2} Q^2 + \frac{a}{120 \, (\hbar c)^4} Q^4 - \frac{b}{5040 \, (\hbar c)^6} Q^6 \right)$$

The result of the ISR experiment

- The values from the direct analysis of cross-sections and fit of extracted form-factor.
- Uncertainty combines statistical and systematic uncertainty.

Knowing the radiative corrections

 Understanding the radiative corrections to elastic peak at the level of 1% relevant many future experiments also with other targets (Eur. Phys. J. A, 59, 225 (2023)).

Proton radius with Kalman Filtering (KF)

- We are interested in proton charge radius, not so much in G_E^p.
- KF is an alternative approach to determining the proton charge radius.
- We want to estimate r_p from many available measurements by <u>relying on a</u> <u>dynamical model</u> that dictates the Q² dependence of the G_e^p to get a reliable estimate for the radius that is closest to the real value.
- The applied form-factor model does not need to be "the correct" model, an approximate model is enough.
- Kalman filtering is an iterative approach.
- Works with (only) linear problems and assumes normally distributed uncertainties.

Kalman filtering - Model

 The KF was run with a third-order polynomial model:

$$G_E^p(Q^2) = n \left(1 - \frac{r_p^2}{6 \,(\hbar c)^2} Q^2 + \frac{a}{120 \,(\hbar c)^4} Q^4 - \frac{b}{5040 \,(\hbar c)^6} Q^6 \right)$$

Higher moments fixed from literature:

$$a = (2.59 \pm 0.194) fm^4$$

$$b = (29.8 \pm 14.71) fm^6$$

- Model fails $Q^2 \ge 0.1 (GeV/c)^2$.
- Model enters KF in a form of a secondderivative:

$$\frac{d^2 G_E^p}{d(Q^2)^2} = \frac{a}{60 \ (\hbar c)^4} - \frac{b}{840 \ (\hbar c)^6} Q^2$$

Proton radius with Kalman filtering #2

Initial estimate of model parameters $\overrightarrow{x(Q^2)} = [G_E, \vec{G_E}]$ and covariance matrix $\underline{\sigma}$ at the highest value of Q^{2.}

Kalman filtering - Estimates

- KF operates as a MSE minimizer.
- In each step KF compares predicted values with the measurements and gives more weight to a more precise value.
- In recursive steps algorithm finds general (smooth) trend through the data to get best estimates of the two open parameters (n, r_p).

Kalman filter – Model dependence

- Model dependence was tested with pseudo-data based on a Polynomial model.
- Recursive nature of KF reduces the model bias.
- Smaller model uncertainty brings KF results closer to the results of linear regression.

Kalman filter – Q² running

- Results of linear regression strongly depend on the Q² range considered in the fit and tend to be biased towards smaller value of r_p.
- Results of KF avoid bias related to the upper Q² cut of available data.

Kalman filter – Floating Normalizations

- Incorrect consideration of relative normalizations between data can significantly bias results of linear regression.
- Results of KF avoid this bias if data quality is sufficient for algorithm to correct for the discrepancy between data sets.

Kalman filter - Results

- KF of selected data-sets reproduces original results of Simon, Bernauer and PRad.
- A self-consistent KF analysis indicates discrepancy between data-sets and motivates further experimental verification of existing FF measurements.
- KF mostly consistent with linear regression but with different parameter correlations.

Summary

- Still facing competing values of proton charge radius.
- Discrepancy due to inconsistent experimental results and ambiguities in the interpretation of available data.
- The ISR experiment used a new experimental technique for determination of the proton form-factors at very small Q².
- ISR validated radiative corrections far away from elastic settings.
- We need to find consensus on how to fit / interpret the nuclear scattering data.
- KF as an alternative analysis approach for more robust determination of the proton charge radius.
- Further measurements are needed Magix experiment with Hypersonic gas jet (or plastic) target!

Thank you!

Radius via Cross-section measurement

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{1}{1+\tau} \left[G_E^2(Q^2) + \frac{\tau}{\varepsilon}G_M^2(Q^2)\right]$$

- Extraction of FF via Rosenbluth Separation.
- Best estimate for radius:

$$r_E^2 = -6\hbar^2 \frac{d}{dQ^2} G_E(Q^2) \Big|_{Q^2=0}$$

Shortcomings of Cryogenic target

ISR form-factors

 Form-factors extracted from deviations of the measurements from the Bernauer model, assuming flawless description of radiative corrections.

Magix @ MESA

Hypersonic jet target

 Target developed for MAGIX, but could be used also in A1.

- No metal frame near the vertex.
- No target walls.
- Width of the jet 2mm (point-like target)
- Density of 10⁻⁴ g/cm³ at 15 bar.
- Luminosity of 10³⁴/cm²s can be achieved at MAMI.

See talk of Yimin Wang

Radius measurements @ Magix

- Persistent discrepancy between different determinations of the proton radius persists demands further measurements.
- New measurement planned also at Magix @ MESA
- Measurement of G_E^p at Q² between 1.10⁻⁵ and 0.03 GeV²
- Expected statistical uncertainty ~ 0.1 %.
- Expected systematical uncertainty < 0.5 %.
- Measurement of G_M^p using double-polarized experiments.

Potential experiments with plastic targets

- Uncertainty of experiments dominated by the target-related systematics.
- Desired target is <u>thin</u> with <u>known and constant density</u> and <u>background</u>, that can be clearly <u>subtracted</u>.
- Plastic (-CH2-) target an effective hydrogen target with carbon background.

Findings of tests with plastic target

Peaking approximations <u>insufficient</u> for describing carbon background.

Findings of tests with plastic target

- Peaking approximations insufficient for describing carbon background.
- Measurements with thin carbon targets are necessary due to the presence of inelastic contributions for adequate background description.
- External radiative corrections need to be applied to match plastic spectra.