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§ The Proton Charge Radius
– Definition and recent reviews

§ The Puzzle
– Spectroscopy
– Scattering

§ Theory
– Lattice QCD

§ MUSE
– Idea, design
– Radius puzzle, two-photon exchange, lepton universality, radiative 

corrections
– Performance, status and timeline

§ Conclusion
– There has been a trend, however we are not done yet 



Charge radius definition & recent reviews
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G. Miller, Defining the Proton Radius: a Unified Treatment
Phys. Rev. C 99, 035202 (2019)

Proton = a rather light, relativistic, composite object
Moment of rest charge distribution not probed by spectroscopy or scattering

Consistent, covariant treatment:

Recent reviews:

§ W. Xiong and C. Peng, Proton Electric Charge Radius from Lepton Scattering,
Universe 9, no.4, 182 (2023)

§ H. Gao, M. Vanderhaeghen, The proton charge radius,
Rev. Mod. Phys. 94, 015002 (2022) 

§ C. Peset, A. Pineda, and O. Tomalak, 
The proton radius (puzzle?) and its relatives,
Prog. Part. Nucl. Phys. 121, 103901 (2021)

§ J.-P. Karr, D. Marchand, E. Voutier,  The proton size,
Nature Reviews Physics 2, 601–614 (2020)



Lepton scattering from a nucleon:

F1, F2 are the Dirac and Pauli form factors

Sachs form factors:

Fourier transform (in the Breit frame)
gives spatial charge and magnetization
distributions

Vertex currents:

Derivative in Q2 → 0 limit:

Lepton scattering and charge radius

μ!, e!
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Expect identical behavior for any charged lepton – e!, μ!



Atomic physics 5

Slide by R. Pohl



Muonic hydrogen
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Slide by R. Pohl



The proton radius puzzle in 2010/2013
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The proton rms charge radius measured with
electrons: 0.8770 ± 0.0045 fm (CODATA2010+Zhan et al.)
muons: 0.8409 ± 0.0004 fm

R. Pohl et al., Nature 466, 213 (2010)
A. Antognini et al., Science 339, 417 (2013)

Proton charge radius (fm)



Proton radius puzzle has drawn attention
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The proton radius puzzle in 2016
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The proton rms charge radius measured with
electrons: (0.8751 ± 0.0061) fm (CODATA2014)
muons: (0.8409 ± 0.0004) fm

R. Pohl et al., Nature 466, 213 (2010)
A. Antognini et al., Science 339, 417 (2013)

Proton charge radius (fm)

5.6 σ
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There is also a deuteron radius puzzle

§ Muonic deuterium agrees with muonic hydrogen w/ istope shift: 
R. Pohl et al., (CREMA) Science 353, 669 (2016)

§ Electron scattering not (yet) conclusive à Mainz, ULQ2, DRAD

§ Muonic 4He agrees with electronic helium: 
J. Krauth et al., Nature 589, 527 (2021)



§ Workshops and conferences
2012, 2016 ECT*
2014, 2018 Mainz
2019 Losinj
2022, 2023 PREN (Paris, Mainz)

§ Special sessions of many other major conferences

§ Re-analyses
§ Theoretical efforts
§ New experiments

Spectroscopy
Scattering

The community got engaged
11



§ The μp (spectroscopy) result is wrong
Discussion about theory and proton structure for extracting the proton 
radius from muonic Lamb shift measurement

§ The ep (spectroscopy) results are wrong
Accuracy of individual Lamb shift measurements? 
Rydberg constant could be off by ~5 sigma

§ The ep (scattering) results are wrong
Fit procedures not good enough 
Q2 not low enough, structures in the form factors

§ Proton structure issues in theory
Off-shell proton in two-photon exchange leading to enhanced effects 
differing between μ and e 
Hadronic effects different for μp and ep:
e.g. proton polarizability (effect ∝ ml

4)

§ Physics beyond Standard Model differentiating μ and e
Lepton universality violation, light massive gauge boson(s)
Constraints on new physics from meson decays and spectroscopy

Possible resolutions to the puzzle
12
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13

MUSE
will test



CODATA2018 new recommended values
14

May 20, 2019
RMP 93, 025010 (2021)

CODATA2014: 8.751(61)  x  10−16 m
[-5.5σ]

3x more precise



CODATA2018 new recommended values
15

CODATA2014: 3.289 841 960 355 (19) x 1015 Hz
[-5.5σ]

3x more precise

May 20, 2019
RMP 93, 025010 (2021)



New, independent Rydberg measurement
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S. Scheidegger and F. Merkt, PRL 132, 113001 (2024) [March 11, 2024]

(turquoise dot with double error bars) following the
procedure described in Ref. [2].
The 2S–2P 3=2 transitions in muonic hydrogen (μH) [16]

are almost exclusively sensitive to the proton rms charge
radius rp and not to R∞, whereas the measurement
presented here, when combined with the measurement of
Ref. [22], is almost exclusively sensitive to R∞ and not to
rp. The two determinations are thus independent of the
correlation between R∞ and rp which affects most

determinations of these quantities based on transitions of
the H atom. The significance of the present results, next to
the unprecedented precision of ν1Sð0Þi , is that they were
obtained from spectra of the H atom and indirectly confirm
the rp value obtained in the μH experiments [16,17]
through the R∞ value. Consequently, the discrepancies
in Fig. 4 cannot be attributed to beyond-the-standard-model
differences in the physical laws governing the properties of
H and μH. This consideration is already implemented in the
CODATA 2018 revision, which had, however, to increase
the error bars because of existing deviating experiments [2].
In our opinion, one could go one step further and use the
ðR∞; rpÞ values given by the orange dot in Fig. 4 and
obtained by combining the results of the measurements of
the 2S–1S transition in H [15,18] and the Lamb-shift in
μH [16,17].

This work was supported by the Swiss National
Science Foundation through a Sinergia-program grant
(No. CRSII5-183579) and a single-investigator grant
(No. 200020B-200478). We thank H. Schmutz, J. A.
Agner, P. Jansen, and G. Clausen for experimental help
and discussions, and J. Morel and D. Husmann (both at
METAS), J. Faist (ETH Zurich), S. Willitsch (University of
Basel), and E. Heiri and F. Mauchle (Switch Foundation)
for their contributions to setting up the SI-traceable
frequency-distribution system used in this work.

Appendix A: On the measured transition frequencies
and their uncertainties.—Figure 5(a) presents the
corresponding ionization frequencies ν2Sð1Þi obtained
from the n ¼ 20–2Sð0Þ (blue), n ¼ 20–2Sð1Þ (orange),
and n ¼ 24–2Sð1Þ (green) transitions. The thick black
horizontal line represents the mean of all ionization
energies and the dotted lines give the standard deviation.
The standard deviations of the mean from the three
color-coded subsets and the total dataset are depicted on
an enlarged scale on the right. The black error bars

FIG. 4. Scatter plot of (R∞, rp) values from transition frequen-
cies in H [20–24] since 2010 relative to the values reported in
Tiesinga et al. [2], in units of the CODATA 2018 uncertainties.
The covariance ellipses with the 1σ, 2σ, and 3σ intervals of the
CODATA 2018 and 2010 adjustments [2,3] are in red. When only
R∞ or rp are reported the data are represented as vertical or
horizontal lines with uncertainties given by shaded areas for rp or
R∞, respectively.

(a) (b) (c)

FIG. 5. (a) Ionization frequencies ν2Sð1Þi obtained from the frequencies νð20 ← 22S01=2Þ (blue), νð20 ← 22S11=2Þ (orange), and
ð24 ← 22S11=2Þ (green). (b),(c) Dependence of the ionization frequency on the electric field strength F (b) and on the Doppler shift νD
(c) (see text for details).

PHYSICAL REVIEW LETTERS 132, 113001 (2024)

113001-5

Spectroscopy:
Rydberg constant and 
proton radius 
are correlated

2024: Small Rydberg 
reconfirmed 

Consistent w/ small radius
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New milestone: Precision Lattice QCD

4

Figure 2. Electromagnetic form factors of the proton as a function of Q2. The orange curves and bands correspond to our
final results at the physical point with their full uncertainties obtained as model averages over the different direct fits. The
light orange bands indicate the statistical errors. The black diamonds represent the experimental ep-scattering data by the A1
Collaboration [4] obtained using Rosenbluth separation. The experimental value of the magnetic moment [68] is depicted by a
red cross.

larger than the results of Refs. [34–36], while Ref. [28]
quotes an even larger central value.

We stress that any difference between our estimate
and previous lattice calculations is not related to our
preference for direct fits to the form factors over the
conventional approach via the z-expansion, as the latter
yields similar values for

p
hr2Ei

p for our data (cf. the ac-
companying paper [44]). For the magnetic radius, our
result agrees with that of Refs. [34, 35] within 1.2 com-
bined standard deviations, while that of Ref. [27] is much
smaller. Our statistical and systematic error estimates
for the electric radius and magnetic moment are similar
or smaller compared to other lattice studies, while being
substantially smaller for the magnetic radius. As a final
remark we note that the lack of a data point at Q2 = 0
complicates the extraction of the magnetic low-Q2 observ-
ables in most recent lattice determinations, especially for
z-expansion fits on individual ensembles. By contrast, the
direct approach – in addition to combining information
from several ensembles and from GE and GM – is more
constraining at low Q2, allowing for considerably less vari-
ation in the form factors in that regime. We believe this
to be responsible, to a large extent, for the small errors
we achieve in the magnetic radii.

Conclusions. We have performed the first lattice QCD
calculation of the radii and magnetic moment of the pro-
ton to include the contributions from quark-connected
and -disconnected diagrams and present a full error bud-
get. The overall precision of our calculation is sufficient to
make a meaningful contribution to the debate surround-
ing the proton radii. Our final estimates are listed in
eqs. (5) to (10).

As an important benchmark, we reproduce the experi-
mentally very precisely known magnetic moments of the
proton and neutron [68] within our quoted uncertainties.
A detailed discussion of our results for the neutron radii
can be found in the accompanying paper [44]. Our re-

Figure 3. Comparison of our best estimates for the electro-
magnetic radii and the magnetic moment of the proton with
other lattice calculations, i.e., Mainz21 [37], ETMC20 [36],
ETMC19 [35], PACS19 [34], and CSSM/QCDSF/UKQCD14
[27, 28]. Only ETMC19 and this work include disconnected
contributions. The Mainz21 values have been obtained by
combining their isovector results with the PDG values for the
neutron [68]. We also show this estimate using our updated
isovector results (cf. the accompanying paper [44]). The exper-
imental value for µp

M is taken from PDG [68]. The two data
points for

p
hr2Eip depict the values from PDG [68] (cross)

and Mainz/A1 [4] (square), respectively. The two data points
for

p
hr2M ip, on the other hand, show the reanalysis of Ref.

[20] either using the world data excluding that of Ref. [4]
(diamond) or using only that of Ref. [4] (square).

sult for the electric (charge) radius of the proton is much
closer to the value inferred from muonic hydrogen spec-
troscopy [2] and the recent ep-scattering experiment by
PRad [6] than to the A1 ep-scattering result [4]. For the
magnetic radius, on the other hand, our estimate is well
compatible with the analyses [4, 20] of the A1 data and
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Precision calculation of the electromagnetic radii of the proton and neutron
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We present lattice-QCD results for the electromagnetic form factors of the proton and neutron
including both quark-connected and -disconnected contributions. The parametrization of the Q2-
dependence of the form factors is combined with the extrapolation to the physical point. In this way,
we determine the electric and magnetic radii and the magnetic moments of the proton and neutron.
For the proton, we obtain at the physical pion mass and in the continuum and infinite-volume limitp

hr2Eip = 0.820(14) fm,
p

hr2M ip = 0.8111(89) fm, and µp
M = 2.739(66), where the errors include all

systematics.

Introduction. The so-called “proton radius puzzle”, i.e.,
the observation of a large tension in the proton’s electric
(charge) radius extracted either from atomic spectroscopy
data of muonic hydrogen [1, 2] or, alternatively, from cor-
responding measurements on electronic hydrogen [3] as
well as ep-scattering data [4, 5], has gripped the scientific
community for more than 10 years and triggered a vigor-
ous research effort designed to explain the discrepancy.

Recent results determined from ep-scattering data col-
lected by the PRad experiment [6] and from atomic hy-
drogen spectroscopy [7–9] (with the exception of Ref. [10])
point towards a smaller electric radius, as favored by
muonic hydrogen and dispersive analyses of ep-scattering
data [11–14]. To allow for a more reliable and precise de-
termination of the proton’s electromagnetic form factors
from which the radii are extracted, efforts are underway
to extend ep-scattering experiments to unprecedentedly
small momentum transfers [15–17], which are comple-
mented by plans to perform high-precision measurements
of µp cross sections [18, 19].

While the situation regarding the electric radius is
awaiting its final resolution, one also finds discrepant
results for the proton’s magnetic radius. Specifically, there
is a tension of 2.7� between the value extracted from the
A1 ep-scattering data alone and the estimate from the
corresponding analysis applied to the remaining world
data [20]. Clearly, a firm theoretical prediction for basic
properties of the proton and the neutron, such as their
radii and magnetic moments, would be highly desirable
in order to assess our understanding of the particles that
make up the largest fraction of the visible mass in the
universe.

In this letter we present our results for the radii and
magnetic moment of the proton computed in lattice QCD.
Compared with previous lattice studies [21–38], our cal-
culation is the first to include the contributions from
quark-disconnected diagrams while controlling all sources
of systematic uncertainties arising from excited-state con-

tributions, finite-volume effects and the continuum ex-
trapolation. We determine the proton’s magnetic ra-
dius

p
hr2M ip with a total precision of 1.1 %, which is

competitive with recent analyses of ep-scattering data
[4, 12, 13, 20]. Moreover, our lattice QCD estimate for
the proton’s magnetic moment is in good agreement with
experiment. Our result for the electric radius, which has a
total precision of 1.7 %, is consistent with the value deter-
mined in muonic hydrogen within 1.5 standard deviations.

Lattice setup. Our aim is to compute the electric and
magnetic Sachs form factors GE(Q2) and GM (Q2) of the
proton and neutron. The electric form factor at zero
momentum transfer yields the nucleon’s electric charge,
i.e., Gp

E(0) = 1 and Gn
E(0) = 0, whereas the magnetic form

factor at Q2 = 0 is identified with the magnetic moment,
GM (0) = µM . The radii can in turn be extracted from
the slope of the form factors at zero momentum transfer,

hr2i = �
6

G(0)

@G(Q2)

@Q2

����
Q2=0

. (1)

The only exception to this definition is the electric radius
of the neutron, where the normalization factor 1/G(0) is
dropped.

For our lattice determination of these quantities, we
use the ensembles generated by the Coordinated Lattice
Simulations (CLS) [39] effort with 2 + 1 flavors of non-
perturbatively O(a)-improved Wilson fermions [40, 41]
and a tree-level improved Lüscher-Weisz gauge action
[42], correcting for the treatment of the strange quark
determinant using the procedure outlined in Ref. [43].
Table I shows the set of ensembles entering the analysis:
they cover four lattice spacings in the range from 0.050
fm to 0.086 fm, and several pion masses, including one
slightly below the physical value (E250). Further details
on our setup of the simulations and the measurements of
the two- and three-point functions of the nucleon can be
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D. Djukanovic, G. von Hippel, H.B. Meyer, K. Ottnad, M. Salg, and H. Wittig,
PRL 132, 211901 (2024) [May 22, 2024]

Consistent with small radius
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The proton radius puzzle in 2023

Plot: courtesy by J. Bernauer

Red = μp spectroscopy
Blue = ep scattering
Light blue = re-fitting of e scattering
Green = ep spectroscopy
Black = CODATA



§ Cross sections and form factors of PRad are different – why?

§ Accuracy of radiative corrections?
§ What did previous experiments do wrong? 
§ Which result is to be preferred, and why?

§ Need independent checks and validations 
(à ISR, ULQ2, MUSE, AMBER, PRad-II, MAGIX, …)

19

Puzzle solved?

Plot: 
courtesy by J. Bernauer



Conclusion

§ Proton Radius Puzzle remains unresolved
§ Diverse array of scattering experiments, e and μ
§ Each with different beam / systematics; expected precision 0.004-0.010 fm
§ Many further spectroscopy efforts underway

Thanks to: S. Schlimme, J. Friedrich, H. Gao, T. Suda, Y. Honda, and E. Downie

20

Experiment Probe Q2 / (GeV/c)2 Status

PRad II e- 0.00004 – 0.06 Approved by JLab PAC, running in 2025

ULQ2 e- 0.0003 – 0.008 Commissioning 2019-22, running 2023-24

MAGIX e- 0.00001 – 0.03 Beam 2025, data on proton 2027

MUSE e+,e-, μ+, μ- 0.002 – 0.07 Physics running 2023-25

AMBER μ+, μ- 0.001 – 0.04 Test runs ongoing, physics run 2025

Ongoing and future scattering experiments
20



Motivation for μp scattering

Muonic hydrogenElectronic hydrogen
Spectroscopy

Scattering
Electron scattering

0.8758 ± 0.0077 0.84184 ± 0.00067 
0.84087 ± 0.00039

0.8770 ± 0.0060
Muon scattering

???

21

Idea for MUSE developed by R. Gilman, G. Miller, and M.K. at PINAN2011, Morocco



protons

π,	μ,
	e

LH2 target

Intermediate Focus
Dispersion 7cm/%

πM1 / MUSE beamline
22

§ πM1: 100-500 MeV/c RF+TOF sep. π, μ, e
Secondary beams of π, μ, e
produced at M-target with
2 mA protons (590 MeV),
1-10 MHz flux collected with 
quads, jaws, and double-C

Point-like source
§ π± produced directly
§ e± from π0 decay + conv.

Extended source
§ μ± from π± decay in flight

O(cm) transv., O(m) longit.

Beam properties well 
understood with TRANSPORT,
TURTLE, and G4Beamline
E. Cline et al., PRC105, 055201 (2022) 
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§ πM1: 100-500 MeV/c RF+TOF sep. π, μ, e
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MUSE at PSI
§ Beam particle tracking
§ Liquid hydrogen target
§ Scattered lepton detected

Measure e±p and μ±p
elastic scattering

p = 115, 160, 210 MeV/c
θ = 20o to 100o

Q2 = 0.002 - 0.07 (GeV/c)2

ε = 0.256 - 0.94

Challenges
§ Secondary beam with π

background – PID in trigger
§ Non-magnetic spectrometer
§ Background from Møller

scattering and muon decay
in flight

24

R. Gilman’s draft scribbling for the MUSE logo contest
on the back of an envelope



MUSE at PSI
§ Beam particle tracking
§ Liquid hydrogen target
§ Scattered lepton detected

Measure e±p and μ±p
elastic scattering

p = 115, 160, 210 MeV/c
θ = 20o to 100o

Q2 = 0.002 - 0.07 (GeV/c)2

ε = 0.256 - 0.94

Challenges
§ Secondary beam with π

background – PID in trigger
§ Non-magnetic spectrometer
§ Background from Møller

scattering and muon decay
in flight e/π/μ

25
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MUSE analysis status
§ Preliminary analysis of scattering data at 115, 160, 210 MeV/c:

Good agreement between data and simulation within blinding
(all observed ratios agree to within 20%)

§ Analysis and simulation framework established (Cooker, g4PSI):
same reconstruction routines for data and pseudo data
§ Detector plugins: calibrated raw data
§ Multiple tracking methods
§ Higher-level analysis plugins

§ In progress:
§ Calibrations, time-dependent
§ Alignment calibration, time-dependent

à improve tracking and internal data consistency
§ Simulations: Radiative generators, digitization,  trigger, PID, 

beam properties, theoretical modeling of xsec, ff, TPE, LU
§ Error propagation and systematic errors



Blinding of MUSE data and simulation

Nov. 2017 Oct. 2017

27

J.C. Bernauer et al.,
Blinding for precision scattering experiments: The MUSE approach as a case 
study, Phys. Rev. C, under review; arXiv:2310.11469v1 [physics.data-an]

Angular dependent O(20%) blinding by stochastic event suppression
for all beam species, polarity, beam momenta, data & simulation

3

recorded beam polarization for a subset of events
will e↵ectively dilute any asymmetry but has min-
imal impact on most analysis work. As the beam
polarization cannot be reconstructed from detector
information and must be provided by the accelera-
tor, accidental unblinding by clever analysis is very
unlikely. However, timing information might make
it possible to guess the correct polarization to undo
the blinding.

In the case of MUSE, where no polarization degrees
of freedom are used, the charge ratio/asymmetry
also depends on the external information, in the
form of the magnetic field direction of the particle
channel [10]. However, each data file has constant
field, and switches are rare, making it too easy to
reconstruct the proper field. The particle species,
on the other hand, is reconstructed from detector
timing information and is thus hard to blind. Fur-
ther, it is not clear if blinding the particle ID would
blind other observables than the species ratio to a
satisfying degree.

4. Coincidence measurements with two or more detec-
tors: Experiments that measure the process in coin-
cidence between multiple detectors can be blinded
via event mixing. For example, a certain type
of dark sector searches like DarkLight [11] recon-
struct the mass of the intermediate particle from
the measured lepton decay pair in two spectrom-
eters. O↵setting the event identification number,
i.e., combining the information of one spectrome-
ter from event N with the information of the sec-
ond spectrometer for event M 6= N , e↵ectively de-
stroys any correlation between the two spectrom-
eters and causes any possible resonance to van-
ish. Subsequently, what remains is indistinguish-
able from background from random coincidences.

IV. APPROACH

In contrast to many other disciplines, where a sin-
gle withheld calibration constant, such as, the exact fre-
quency of a laser for spectroscopy, can e↵ectively blind
the analysis, scattering experiments need to apply a
blinding function that depends on at least a subset of the
same kinematical variables as the underlying physics.

MUSE’s physics goals include measurements of cross
sections and ratios. This implies blinding of at least the
measured data, as blinding of the simulation is not su�-
cient to e↵ectively blind ratios. For MUSE, cross sections
and ratios are typically expressed as functions of beam
momentum and scattering angle (or Q2), and the chosen
blinding function will depend on the same observables.

A scattering experiment, at its core, is a counting ex-
periment. Blinding must then modify the counts. In
principle, it is possible to change the count in both direc-
tions either by duplicating or removing events. However,

duplicated events are easy to detect and therefore could
be easily unblinded. The algorithm used in MUSE there-
fore only rejects events.
Like many experiments, MUSE models the analysis as

a chain of operations on the recorded data. An optimal
point in this chain has to be found to apply blinding.
In the first level of analysis, the raw data are processed
to produce calibrated and normalized hits. This process
typically only requires information of a given detector
and does not take into account information of other de-
tectors. In the second layer, the hit information from
multiple detectors are combined, for example for time-of-
flight determinations or tracking. The individual physics
analyses are based on top of these common analysis
steps, defining particle- and reaction-identification selec-
tion, background suppression, high-level physical quanti-
ties etc.
Blinding has to happen before the last level, as the

decisions made for these selections are those that could
be most likely a↵ected by the bias of the analyzer. Vice
versa, blinding too early might hinder the proper analy-
sis of required calibrations on the detector level. MUSE
therefore chooses to blind at the tracking step.
This choice has three benefits: the tracking step is

the most time-intensive operation and therefore requires
large CPU resources to redo. Blinding at the track-
ing level therefore protects against low-level e↵orts to
unblind, as this would require a resource-intensive re-
tracking of a large subset of the data with a patched
tracker version. Further, blinding just after this step,
with a suitable retention of the blinded information, al-
lows for rapid unblinding, as only the later analysis lay-
ers need to be reprocessed. Third, the blinding code can
make use of the tracker information to determine the
kinematic-dependency of the blinding function.
In the case of MUSE, the actual blinding is imple-

mented as a stochastic suppression of events. To this
end, for each track, the blinding framework calculates a
probability of suppression, defined as:

psup =
0.2

3
(Ai + 0.3 cosBi✓

0) (3� ✓0)

with parameters Ai 2 [0.25, 1] and Bi 2 [3, 10], and ✓0 is
the angle of the outgoing particle measured with respect
to the nominal beam axis. The parameters Ai and Bi

are generated from a fixed-seed pseudo-random number
generator, i.e., they do not appear in clear text in the
source code. In total, 2 ⇥ 18 = 36 sets of parameters
are generated, one each for each species (e,µ,⇡), charge
(±), and momentum (115, 160, 210 MeV/c) combination
(18 total), with a second set for simulated instead of real
data. For each event, the corresponding parameter set
number (i) is calculated from the particle ID and slow
control information, then, the suppression probability,
psup, is calculated based on the reconstructed track angle,
✓0. Finally, a random number generator throws a num-
ber between 0 and 1. If the number is smaller than psup,
the event will be suppressed. Two example probability

3

recorded beam polarization for a subset of events
will e↵ectively dilute any asymmetry but has min-
imal impact on most analysis work. As the beam
polarization cannot be reconstructed from detector
information and must be provided by the accelera-
tor, accidental unblinding by clever analysis is very
unlikely. However, timing information might make
it possible to guess the correct polarization to undo
the blinding.

In the case of MUSE, where no polarization degrees
of freedom are used, the charge ratio/asymmetry
also depends on the external information, in the
form of the magnetic field direction of the particle
channel [10]. However, each data file has constant
field, and switches are rare, making it too easy to
reconstruct the proper field. The particle species,
on the other hand, is reconstructed from detector
timing information and is thus hard to blind. Fur-
ther, it is not clear if blinding the particle ID would
blind other observables than the species ratio to a
satisfying degree.

4. Coincidence measurements with two or more detec-
tors: Experiments that measure the process in coin-
cidence between multiple detectors can be blinded
via event mixing. For example, a certain type
of dark sector searches like DarkLight [11] recon-
struct the mass of the intermediate particle from
the measured lepton decay pair in two spectrom-
eters. O↵setting the event identification number,
i.e., combining the information of one spectrome-
ter from event N with the information of the sec-
ond spectrometer for event M 6= N , e↵ectively de-
stroys any correlation between the two spectrom-
eters and causes any possible resonance to van-
ish. Subsequently, what remains is indistinguish-
able from background from random coincidences.

IV. APPROACH

In contrast to many other disciplines, where a sin-
gle withheld calibration constant, such as, the exact fre-
quency of a laser for spectroscopy, can e↵ectively blind
the analysis, scattering experiments need to apply a
blinding function that depends on at least a subset of the
same kinematical variables as the underlying physics.

MUSE’s physics goals include measurements of cross
sections and ratios. This implies blinding of at least the
measured data, as blinding of the simulation is not su�-
cient to e↵ectively blind ratios. For MUSE, cross sections
and ratios are typically expressed as functions of beam
momentum and scattering angle (or Q2), and the chosen
blinding function will depend on the same observables.

A scattering experiment, at its core, is a counting ex-
periment. Blinding must then modify the counts. In
principle, it is possible to change the count in both direc-
tions either by duplicating or removing events. However,

duplicated events are easy to detect and therefore could
be easily unblinded. The algorithm used in MUSE there-
fore only rejects events.
Like many experiments, MUSE models the analysis as

a chain of operations on the recorded data. An optimal
point in this chain has to be found to apply blinding.
In the first level of analysis, the raw data are processed
to produce calibrated and normalized hits. This process
typically only requires information of a given detector
and does not take into account information of other de-
tectors. In the second layer, the hit information from
multiple detectors are combined, for example for time-of-
flight determinations or tracking. The individual physics
analyses are based on top of these common analysis
steps, defining particle- and reaction-identification selec-
tion, background suppression, high-level physical quanti-
ties etc.
Blinding has to happen before the last level, as the

decisions made for these selections are those that could
be most likely a↵ected by the bias of the analyzer. Vice
versa, blinding too early might hinder the proper analy-
sis of required calibrations on the detector level. MUSE
therefore chooses to blind at the tracking step.
This choice has three benefits: the tracking step is

the most time-intensive operation and therefore requires
large CPU resources to redo. Blinding at the track-
ing level therefore protects against low-level e↵orts to
unblind, as this would require a resource-intensive re-
tracking of a large subset of the data with a patched
tracker version. Further, blinding just after this step,
with a suitable retention of the blinded information, al-
lows for rapid unblinding, as only the later analysis lay-
ers need to be reprocessed. Third, the blinding code can
make use of the tracker information to determine the
kinematic-dependency of the blinding function.
In the case of MUSE, the actual blinding is imple-

mented as a stochastic suppression of events. To this
end, for each track, the blinding framework calculates a
probability of suppression, defined as:

psup =
0.2

3
(Ai + 0.3 cosBi✓

0) (3� ✓0)

with parameters Ai 2 [0.25, 1] and Bi 2 [3, 10], and ✓0 is
the angle of the outgoing particle measured with respect
to the nominal beam axis. The parameters Ai and Bi

are generated from a fixed-seed pseudo-random number
generator, i.e., they do not appear in clear text in the
source code. In total, 2 ⇥ 18 = 36 sets of parameters
are generated, one each for each species (e,µ,⇡), charge
(±), and momentum (115, 160, 210 MeV/c) combination
(18 total), with a second set for simulated instead of real
data. For each event, the corresponding parameter set
number (i) is calculated from the particle ID and slow
control information, then, the suppression probability,
psup, is calculated based on the reconstructed track angle,
✓0. Finally, a random number generator throws a num-
ber between 0 and 1. If the number is smaller than psup,
the event will be suppressed. Two example probability
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FIG. 1. Two example distributions for blinding simulation or
data as a function of ✓0. For simulation (data) the values of
A = 0.4 (0.8) and B = 4.1 (7.2) were arbitrarily chosen.
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FIG. 2. The impact of blinding on the extraction of the form
factor. We assume that the form factor follows the standard
dipole for electron-proton scattering, which is plotted for ref-
erence. The r2 denotes the proton charge radius from the as-
sociated form factors. Note that the blinding directly changes
the extracted radius from the true radius. To generate these
form factors a momentum of 210 MeV/c was used.

distributions for blinding simulation and data are shown
in Fig. 1 which have for simulation (data) the values of
A = 0.4 (0.8) and B = 4.1 (7.2).

If we blind on the cross-section level, then the impact of
blinding on the form-factor level follows the square-root
of the blinding probability. An example of the change to
the extracted form factor in simulation and data can be
seen in Fig. 2, where we assume a dipole form factor as
the extracted form factor; also shown is the extracted r2,
the proton charge radius squared, for the dipole form-
factor, and for the simulation and data with blinding
factors applied.

In the final analysis, one would divide the data by the
simulation to correct for detector acceptance, energy loss,
target thickness, etc. It is worth emphasizing that with
di↵erent blinding factors applied to the data and simula-
tion, an overall blinding e↵ect is preserved when taking
ratios of data and simulation. An example of the ratio
of form factors from simulation and experiment is shown
in Fig. 3.
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FIG. 3. The ratio of data to simulation of the extracted form-
factor, assuming a dipole shape. A line at 1 is shown to guide
the eye.

V. CRYPTOGRAPHIC BLINDING

A naive implementation of blinding could then simply
remove the selected track from the output file. How-
ever, this would require a full re-tracking of the data to
unblind. Instead, the code marks the event as blinded.
Further analysis steps written using the MUSE analysis
framework will automatically skip these events if unblind-
ing is not enabled.
Of course, such blinding would be trivially defeated by

simply ignoring the flag in the following steps. Therefore,
the code encrypts the track information. At the begin-
ning of the processing of a data file, for each i, a 32-bit
random number Xi is generated. The track information
is then encrypted by XORing the bit-representation of
the track parameters with Xi for the selected key slot, re-
peating the 32-bit pattern as necessary to cover all bits of
the track information. We note here that this is not cryp-
tographically secure. The XOR key can most likely be
reconstructed from the encrypted information and known
or guessable bits of the cleartext. However, as discussed
above, such an attempt is outside of our threat model.

VI. UNBLINDING SCHEDULE AND
LOGISTICS

To facilitate unblinding, the per-file random keys are
stored in the output file, however, encrypted using a pub-
lic/private key system. MUSE makes use of the GPG
cryptographic library [12] for this purpose.
In a public/private key system, one direction of the

encryption/decryption process is performed with a pub-
lic key, that is, the key is assumed to be known to
the world [13]. The other direction of the encryp-
tion/decryption then requires the private key, supposed
to be known only by the respective key holders.
It is desirable that the decision and capability to un-

blind is not in the hands of a single individual. To en-
force this algorithmically, MUSE identified three persons
to hold keys. The algorithm requires two out of the three
keys to unblind, in turn requiring two out of three of the
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blinding on the form-factor level follows the square-root
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the extracted form factor in simulation and data can be
seen in Fig. 2, where we assume a dipole form factor as
the extracted form factor; also shown is the extracted r2,
the proton charge radius squared, for the dipole form-
factor, and for the simulation and data with blinding
factors applied.

In the final analysis, one would divide the data by the
simulation to correct for detector acceptance, energy loss,
target thickness, etc. It is worth emphasizing that with
di↵erent blinding factors applied to the data and simula-
tion, an overall blinding e↵ect is preserved when taking
ratios of data and simulation. An example of the ratio
of form factors from simulation and experiment is shown
in Fig. 3.
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V. CRYPTOGRAPHIC BLINDING

A naive implementation of blinding could then simply
remove the selected track from the output file. How-
ever, this would require a full re-tracking of the data to
unblind. Instead, the code marks the event as blinded.
Further analysis steps written using the MUSE analysis
framework will automatically skip these events if unblind-
ing is not enabled.
Of course, such blinding would be trivially defeated by

simply ignoring the flag in the following steps. Therefore,
the code encrypts the track information. At the begin-
ning of the processing of a data file, for each i, a 32-bit
random number Xi is generated. The track information
is then encrypted by XORing the bit-representation of
the track parameters with Xi for the selected key slot, re-
peating the 32-bit pattern as necessary to cover all bits of
the track information. We note here that this is not cryp-
tographically secure. The XOR key can most likely be
reconstructed from the encrypted information and known
or guessable bits of the cleartext. However, as discussed
above, such an attempt is outside of our threat model.

VI. UNBLINDING SCHEDULE AND
LOGISTICS

To facilitate unblinding, the per-file random keys are
stored in the output file, however, encrypted using a pub-
lic/private key system. MUSE makes use of the GPG
cryptographic library [12] for this purpose.
In a public/private key system, one direction of the

encryption/decryption process is performed with a pub-
lic key, that is, the key is assumed to be known to
the world [13]. The other direction of the encryp-
tion/decryption then requires the private key, supposed
to be known only by the respective key holders.
It is desirable that the decision and capability to un-

blind is not in the hands of a single individual. To en-
force this algorithmically, MUSE identified three persons
to hold keys. The algorithm requires two out of the three
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If we blind on the cross-section level, then the impact of
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seen in Fig. 2, where we assume a dipole form factor as
the extracted form factor; also shown is the extracted r2,
the proton charge radius squared, for the dipole form-
factor, and for the simulation and data with blinding
factors applied.

In the final analysis, one would divide the data by the
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target thickness, etc. It is worth emphasizing that with
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tion, an overall blinding e↵ect is preserved when taking
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of form factors from simulation and experiment is shown
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V. CRYPTOGRAPHIC BLINDING

A naive implementation of blinding could then simply
remove the selected track from the output file. How-
ever, this would require a full re-tracking of the data to
unblind. Instead, the code marks the event as blinded.
Further analysis steps written using the MUSE analysis
framework will automatically skip these events if unblind-
ing is not enabled.
Of course, such blinding would be trivially defeated by

simply ignoring the flag in the following steps. Therefore,
the code encrypts the track information. At the begin-
ning of the processing of a data file, for each i, a 32-bit
random number Xi is generated. The track information
is then encrypted by XORing the bit-representation of
the track parameters with Xi for the selected key slot, re-
peating the 32-bit pattern as necessary to cover all bits of
the track information. We note here that this is not cryp-
tographically secure. The XOR key can most likely be
reconstructed from the encrypted information and known
or guessable bits of the cleartext. However, as discussed
above, such an attempt is outside of our threat model.

VI. UNBLINDING SCHEDULE AND
LOGISTICS

To facilitate unblinding, the per-file random keys are
stored in the output file, however, encrypted using a pub-
lic/private key system. MUSE makes use of the GPG
cryptographic library [12] for this purpose.
In a public/private key system, one direction of the

encryption/decryption process is performed with a pub-
lic key, that is, the key is assumed to be known to
the world [13]. The other direction of the encryp-
tion/decryption then requires the private key, supposed
to be known only by the respective key holders.
It is desirable that the decision and capability to un-

blind is not in the hands of a single individual. To en-
force this algorithmically, MUSE identified three persons
to hold keys. The algorithm requires two out of the three
keys to unblind, in turn requiring two out of three of the
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MUSE performance: Full vs emptyAluminized Mylar in Target Cell
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aluminized mylar peak. Clearly see cell walls in warm cell.
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+210 MeV/c beam
“Full” cell (lq H2) and “warm” cell (are the same cell)
Cell wall structures due to aluminized mylar
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Reaction identification

βout from reaction vertex to SPS, p =  –115 MeV/c
Clean separation of μp scattering vs μ beam decay-in-flight events 

Reaction ID
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�out , the � between the reaction vertex and the SPS. The �out cut separates µp scattering events from
µ decay-in-flight events. Shown for �115 MeV/c.
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Muon beam decay events data vs sim

§ p = + 115 MeV/c; left: vertex; right: reconstructed angle
§ Good agreement between data and simulation for muon beam 

decay-in-flight events
§ Both data and simulation are blinded

µ Decay Events in Simulation and Data - New Analysis
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Comparison of µ decay events as identified by reaction ID in simulation and data at 115 MeV/c. Good
agreement between single run of data and simulation. Left: Reconstructed Z vertex. Right:
Reconstructed ✓.
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Muon scattering events data vs sim

§ p = + 115 MeV/c; left: vertex; right: reconstructed angle
§ Good agreement between data and simulation for muon

scattering events
§ Both data and simulation are blinded
§ Similar findings for all data sets 

μ±, e±, π±@ 115, 160, 210 MeV/c

µ Scat. Events in Simulation and Data - New Analysis
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115 MeV/c. Good agreement between data and simulation. Left: Reconstructed Z vertex. Right:
Reconstructed ✓.
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Preliminary cross sections at 160 MeV/c

§ Preliminary analysis of 2023 μ±p scattering data
§ p = 160 MeV/c, target thickness experimentally determined
§ Both data and simulation are blinded

Muse radius extraction
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Comparisons of e to µ or of positive to 
negative are insensitive to many of the 
systematics.

How different are the e/μ radii? 
(truncation error largely cancels)

Sensitivity to differences in extracted e/μ 
radii:

σ(re-rμ) ≈ 0.005 fm

What is the radius? 
Absolute values of extracted e/μ radii 
(assuming no +/− difference seen):

σ(re), σ(rμ) ≈ 0.008 fm

μ±p → μ±p 



MUSE allows the study of 
two-photon exchange

9

MUSE covers wide ε range, at small values of Q2

Projected systematic uncertainties: 0.1% in δ2γ.
MUSE TDR, arXiv:1709.09753 [physics.ins-det]. 

Oleksandr Tomalak, Few-Body Systems, 59, 87 (2018) 
T. Engel, et al., Eur. Phys. J. A 59, 253 (2023) - McMule 
P. Choudhary, et al., Eur. Phys. J. A 60, 69 (2024) - HBχPT

σ± = σ1γ(1 ± δ2γ)
σ+

σ− ≈ 1 + 2δ2γ

TPE correction at leading order, δ2γ
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Two-photon exchange
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Fig. 2 Comparison of virtual TPE corrections, δ2γ , to e− p (left column) and µ− p (right column) scattering for three different beam momenta
envisaged by the MUSE experiment [48]: pbeam = 115, 153, 210 MeV. The soft singularities are subtracted using the Maximon-Tjon prescription
[3]. Shown are the elastic TPE from our box model calculation with proton dipole form factors and different values of #2 = 0.60, 0.66, 0.71 and
0.86 GeV2 (orange dotted, red dot-dashed, blue short-dashed and pink long-dashed lines), compared to the theoretical prediction for the total TPE
from [38] (solid cyan line), and the empirical extraction of the total TPE from [16] (solid violet line with error band)

The one-loop amplitude squared, cf. the second line in (14a),
is included in the two-loop matrix element. We note that some
NLO diagrams for the process of ℓp → ℓpγ , corresponding
to an IR-finite subset of the ℓp → ℓp process at NNLO,
have been previously included in [20] in approximate ways.
The full set of leptonic NNLO corrections depicted in (14a),
(14b), and (14c) has been computed in [9] with a slicing
approach and later with the McMule framework in [10].
The two results disagree substantially and a corresponding
discussion can be found in [10].

The leptonic corrections are expected to be dominant, at
least for the case ℓ = e, since they contain hard collinear
emission from the electron line. This leads to large loga-
rithms. As we will see, the size of these corrections depends

crucially on the precise definition of the observable. More
concretely, the way additional photon radiation is treated in
the experiment will have a decisive impact. Thus, these cor-
rections have to be under control for empirical extractions of
form factors and TPE effects.

The leptonic corrections are technically the most simple
NNLO corrections. Going beyond OPE, we have to consider
one-loop pentagon diagrams (for the real-virtual corrections)
and, more challenging, a set of topologically non-trivial two-
loop diagrams, including (crossed) double-box diagrams. In
the language of lepton-proton scattering, they correspond
to three-photon exchange contributions. With current tech-
niques, it is not possible to do such a computation including
form factors. Hence, for all NNLO corrections beyond OPE
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TPE is the leading explanation for the 
proton form factor ratio discrepancy 

A comparison of the results from recent R2γ experiments
to Blunden’s newest calculation (N þ Δ) is shown in Fig. 3.
We plot the difference between the data and theory
calculated at the ϵ and Q2 for each data point to approx-
imately take into account that the data were taken at
different ϵ and Q2 values. This shows the data are largely
consistent with each other, but mostly below the calculation
by Blunden. A similar plot could be made versus Q2.

Comparison with the phenomenological prediction of
Bernauer (not shown) shows good agreement.
We do not agreewith the conclusions of the earlier Letters

[25,26]. The data shown in Fig. 3 clearly favor a smallerR2γ.
While the agreement with the phenomenological prediction
of Bernauer suggests that TPE is causing most of the
discrepancy in the form factor ratio in the measured range,
the theoretical calculation of Blunden, which shows roughly
enough strength to explain the discrepancy at larger Q2,
does not match the data in this regime. To clarify the
situation, the size of TPE at large Q2 has to be determined
in future measurements.

FIG. 3. Comparison of the recent results to the calculation by
Blunden. The data are in good agreement, but generally fall
below the prediction. Please note that data at similar ϵ values have
been measured at different Q2. Also note that the VEPP-3 data
have been normalized to the calculation at high ϵ.

TABLE II. OLYMPUS results for R2γ using the prescriptions: Mo-Tsai to order α3 (a) and to all orders (b); and
using Maximon-Tjon to order α3 (c) and to all orders (d).

hϵi hQ2i GeV2=c2 R2γ (a) R2γ (b) R2γ (c) R2γ (d) δstat δuncorrsyst δcorrsyst

0.978 0.165 0.9971 0.9967 0.9979 0.9978 0.0003 0.0046 0.0036
0.898 0.624 0.9920 0.9948 0.9944 0.9958 0.0019 0.0037 0.0045
0.887 0.674 0.9888 0.9913 0.9912 0.9923 0.0021 0.0042 0.0045
0.876 0.724 0.9897 0.9927 0.9921 0.9935 0.0023 0.0060 0.0045
0.865 0.774 0.9883 0.9921 0.9907 0.9929 0.0026 0.0050 0.0045
0.853 0.824 0.9879 0.9918 0.9903 0.9926 0.0029 0.0039 0.0045
0.841 0.874 0.9907 0.9952 0.9931 0.9958 0.0032 0.0042 0.0045
0.829 0.924 0.9919 0.9967 0.9943 0.9972 0.0036 0.0033 0.0045
0.816 0.974 0.9950 0.9998 0.9973 1.0002 0.0039 0.0033 0.0045
0.803 1.024 0.9913 0.9969 0.9936 0.9971 0.0043 0.0040 0.0045
0.789 1.074 0.9905 0.9955 0.9927 0.9956 0.0047 0.0050 0.0045
0.775 1.124 0.9904 0.9960 0.9926 0.9960 0.0052 0.0041 0.0045
0.761 1.174 0.9950 1.0011 0.9971 1.0009 0.0057 0.0063 0.0045
0.739 1.246 0.9945 1.0007 0.9964 1.0002 0.0046 0.0056 0.0045
0.708 1.347 0.9915 0.9985 0.9930 0.9977 0.0054 0.0049 0.0046
0.676 1.447 0.9842 0.9912 0.9854 0.9899 0.0063 0.0050 0.0046
0.635 1.568 1.0043 1.0126 1.0049 1.0105 0.0063 0.0055 0.0046
0.581 1.718 0.9968 1.0063 0.9966 1.0032 0.0077 0.0096 0.0046
0.524 1.868 0.9953 1.0055 0.9941 1.0013 0.0095 0.0118 0.0046
0.456 2.038 1.0089 1.0212 1.0064 1.0154 0.0104 0.0108 0.0046

FIG. 2. OLYMPUS result for R2γ using the Mo-Tsai [21]
prescription for radiative corrections to all orders. Uncertainties
shown are statistical (inner bars), uncorrelated systematic (added
in quadrature, outer bars), and correlated systematic (gray band).
Note the 12° data point at ϵ ¼ 0.978 is completely dominated by
systematic uncertainties.

PRL 118, 092501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

3 MARCH 2017

092501-4

16

!"
!"#
"#+!"#

!"!! !"!# !"!$ !"!% !"!&
-!

"

!

#

$

%

&

|!!| ($%&/')!

δ γ
γ
(%

)

p = 210 MeV/c (e-) !"
!"#
"#+!"#

!"!! !"!# !"!$ !"!% !"!&
!"!

!"'

("!

("'

#"!

#"'

)"!

)"'

|!!| ($%&/')!

δ γ
γ
(%

)

p = 210 MeV/c (μ-)

!"
!"#
"#+!"#

!"!! !"!# !"!$ !"!% !"!&
-#

!

#

$

%

&

|!!| ($%&/')!

δ γ
γ
(%

)

p = 153 MeV/c (e-) !"
!"#
"#+!"#

!"!! !"!# !"!$ !"!% !"!&
!"!

!"'

#"!

#"'

$"!

$"'

'("

%"'

|!!| ($%&/')!

δ γ
γ
(%

)

p = 153 MeV/c (μ-)

!"
!"#
"#+!"#

!"!!! !"!!# !"!$! !"!$# !"!%! !"!%#
-$

!

$

%

&

!

|!!| ($%&/')!

δ γ
γ
(%

)

p = 115 MeV/c (e-) !"
!"#
"#+!"#

!"!!! "#""$ "#"%" "#"%$ "#"&" "#"&$
"#"

"#$

%#"

%#$

&#"

&#$

'#"

'#$

|!!| ($%&/')!

δ γ
γ
(%

)

p = 115 MeV/c (μ-)

FIG. 5. The fractional TPE contributions (expressed in percentage) to the elastic lepton-proton scattering cross-section [i.e.,
of O(α)] in HBχPT. Left (right) plots show TPE contribution for e-p (µ-p) scattering, respectively, at specific MUSE beam
momenta. Each plot covers the full kinematical scattering range, 0 < |Q2| < |Q2

max| with θ ∈ [0, π]. The dotted (black) lines
correspond to LO results, the dashed (blue) lines correspond to NLO corrections, while the thick solid (red) lines denote the
total (LO plus NLO) contributions from all the TPE diagrams displayed in Fig. 1.

B.S. Henderson et al. [OLYMPUS], 
PRL 118, 092501 (2017) 

O. Tomalak, Few-Body Systems, 59, 87 (2018)
T. Engel, et al., Eur. Phys. J. A 59, 253 (2023)

P. Choudhary, et al., EPJA 60, 69 (2024)
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Extraction of radius from muon scattering

§ Dispersively improved chiral effective field theory: 
F. Gil-Domingez, J.M. Alarcón, C. Weiss, PRD 108, 074026 (2023)

§ 0.01 fm radius change à 0.9% cross sec. change at highest Q2

§ Largest MUSE systematic: Radiative corrections for ep à ep

Proton charge radius extraction from 
muon scattering at MUSE
• A 0.01 fm change in radius 

corresponds to about 0.9 % change 
in cross section.


• Good control of systematic 
uncertainties is required to achieve 
the goal of the experiment.


• Radiative corrections are the largest 
contributor to systematic 
uncertainties in MUSE.

6
Dispersively improved chiral effective field theory:  
F. Gil-DomÍnguez, J.M. Alarcón and C. Weiss, Phys. Rev. D 108, no.7, 074026 (2023)

TPE

p0 = 210 MeV/cdσ
/d

σ S
D

rp = 0.83 fm

rp = 0.88 fm

μp → μp
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MUSE can probe radiative corrections

§ MUSE non-magnetic, e± detection threshold affects radiative correction
§ Initial state radiation (ISR): detect & veto hard forward γ to reduce radcorr err.

8 Page 4 of 7 Eur. Phys. J. A (2024) 60 :8
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Fig. 3 Simulation of the reconstructed photon momentum in the
MUSE calorimeter (red histogram) for scattering of 161 MeV/c elec-
trons at 60◦

Preliminary commissioning data show a relative energy reso-
lution of the calorimeter of 20 %, at the energy corresponding
to about half the beam momentum of 210 MeV/c, up to 25 %
for 115 MeV/c. We assume the uncertainty of themean of the
reconstructed photon-energy to be better than σEγ = 5 MeV.

3 Simulations of the lepton-scattering cross section

Figure 4 shows histograms from ESEPP simulations of the
electron (red) and muon (blue) scattering cross sections at a
kinematic setting with an incident beam momentum of p0 =
161 MeV/c and scattering angle θ of 60◦. This setting is at the
center of the momentum and angular range of the experiment.

In the experiment, all scattered particles above the
momentum detection threshold p ′

min contribute to the exper-
imental yield. The momentum ranges are indicated by the
horizontal lines. Each histogram shows the elastic peak at
high momentum and its radiative tail. The muon elastic peak
is slightly offset from the electron peak due to the larger
proton recoil energy in µp scattering. The apparent gap
between the elastic peak and the tail is an artifact of the
ESEPP calculation. The event generator includes explicitly
hard bremsstrahlung photons in the tail region with energies
as low as the cut-off energy Ecut

γ . The contribution to the cross
section from photons with Eγ < Ecut

γ is integrated over all
photon directions and energies and is included in the elastic
peak [3 ]. Due to their small mass, the cross section in the
radiative tail is much larger for electrons than muons. In this
kinematic setting, the cross section for ep at the e detection
threshold is about 200 times larger than forµp at theµ thresh-
old. The ℓp → ℓ′ pγ cross section vanishes for both lepton
species as the scattered-lepton momentum reaches zero. The
local maximum in the electron radiative tail at low final-state
electron momenta is caused by the increase of the ep scat-
tering cross section after initial-state photon emission from
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electron scattering
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Fig. 4 ESEPP calculations of the electron (red) and muon (blue) scat-
tering cross sections for an incident beam momentum of 161 MeV/c
and a scattering angle of 60◦. The cross sections are integrated over all
final-state photon directions. The horizontal lines indicate the lepton-
momentum acceptance of MUSE

the electron in the beam direction and the subsequent reduc-
tion of the electron momentum and momentum transfer in
the scattering process [7 ].

4 Radiative corrections

We have used the ESEPP event generator in a simplified sim-
ulation of MUSE and studied the radiative corrections δ in
a variety of experimental conditions. The simulation is sim-
plified in that it is not a full simulation of the MUSE appa-
ratus but assumes the nominal beam momentum, scattering
angle, momentum-detection threshold, and photon calorime-
ter geometrical acceptance and energy reconstruction. Pro-
cesses accompanying the passage of incident and outgoing
particles through the upstream detector and target materials
have not yet fully been considered. Initial tests with a more
comprehensive simulation show that this simple approach
encompasses all relevant effects and the two approaches
give quantitatively similar results. Uncertainties in the beam
momentum and scattering angle are so small that they do not
significantly contribute to the uncertainty in the radiative cor-
rections. The uncertainty in the minimum lepton momentum
p ′

min, however, contributes strongly to radiative corrections
in electron scattering but not in muon scattering.

This result is exemplified in the values for δ that are shown
in Fig. 5 as a function of p ′

min for electron (top panel) and
muon (bottom panel) beams of a momentum of 161 MeV/c
and for a mid-range scattering angle of 60◦. The correction
parameter δ is negative when the scattering cross section is
smaller than the Born cross section at high values of p ′

min.
The red curves show the results for all scattering events,

regardless of the emission of photons. For ep , the full result
shows a strong dependence on p ′

min with a steep slope
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Fig. 5 Results of radiative corrections for MUSE with a beam momen-
tum of 161 MeV/c and a scattering angle of 60◦. The top panel shows the
results for electron scattering, the bottom panel the results for muons.
The curves show the results without (red) and with increasingly strong
cuts on initial-state radiation using the calorimeter (green). Those dis-
tributions all overlap in the muon case

(∂δ/∂ p ′
min > 1 % per 1 MeV/c) close to the SPS detection

threshold of about 14 MeV/c. If uncontrolled, the instru-
mental uncertainty in p ′

min would generate a considerable
uncertainty in δ.

As discussed in Sect. 3 , the increase in δ with a decrease
in p ′

min is linked to the increase of the ep cross section with
reduced beam momentum after the emission of high-energy
initial-state radiation. The initial-state radiation is strongly
forward peaked, and the MUSE calorimeter in the beam-
line downstream of the target is capable of detecting these
bremsstrahlung photons. The various green curves in Fig. 5
show the results for δ after vetoing an increasing fraction of
events with forward going hard photons. The lower the cho-
sen photon-energy cut to suppress the initial-state radiation,
the smaller are the radiative corrections and their dependence
on p ′

min.
However, as seen in Fig. 3 , a sizable fraction of the

initial-state-radiation momentum distribution is at low pho-
ton momenta. Selecting the photon-energy cut in that region
increases the uncertainty in the experimental cross section
and in the corresponding radiative corrections due to uncer-
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Fig. 6 Total uncertainties of radiative corrections σδ for ep scattering
and various beam momenta and scattering angles in MUSE as a function
of the photon-energy cut Ecut

γ

tainties in the reconstructed photon momentum. To determine
the optimum event selection with the smallest overall uncer-
tainty for the radiative corrections for ep , we repeated the
simulations, systematically increasing the upper limit of the
energies of the accepted hard-photons in the forward direc-
tion from 0 to 100 % of the beam momentum.

The results are shown in Fig. 6. We found a shallow min-
imum of the total uncertainty with a photon energy cut of
Eγ < 0.4 p 0c. Radiative corrections for muons are much
smaller than for electrons and nearly independent on p ′

min,
as shown in the bottom panel of Fig. 5. Because there are
not many photons emitted in the forward direction in the µp
scattering process, the calorimeter cut does not significantly
affect the data, and the results of all calculation variations
overlap.

Table 1 summarises the radiative-correction values at the
three MUSE beam momenta and for three scattering angles.
The table also indicates the minimum lepton momentum that
was used in the determination of the corrections for each
scattering angle. The statistical uncertainties in the correc-
tions are of the order 10− 3 . Suppressing hard initial-state
radiation using the photon calorimeter reduces the ep radia-
tive corrections to the Born cross section by a factor of 2.5
to 6, depending on the kinematic setting, to values below
0.1. The corrections for µp scattering are at most 0.01 and
independent of the calorimeter response.

The impact of the instrumental uncertainties in the key
input parameters xi of the calculation – the beam momen-
tum, scattering angle, minimum final-state lepton momen-
tum, and the photon-energy cut for forward going photons –
was studied by varying that input to determine ∂δ/∂xi and
propagate the experimental uncertainties into the uncertainty
of the radiative corrections. The preliminary results for a
calorimeter threshold of Eγ < 0.4 p 0c are given in Table 2
for ep scattering.
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L. Li et al., “Instrumental uncertainties in radiative 
corrections for the MUSE experiment”,  
Eur. Phys. J. A 60:8 (2024).

J.C. Bernauer et al., “Blinding for precision 
scattering experiments: The MUSE approach as 
a case study”,  
arXiv:2310.11469v1 [physics.data-an] 
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MUSE forward photon calorimeter

W. Lin et al. (MUSE Collaboration), arXiv:2408.13380 [physics.ins-det]
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FIG. 15: Comparison between data and simulation for
calorimeter light output resolution for electrons vs.
beam momentum. Resolution fits as discussed in
Sec. IVA are performed to compare di↵erences at

di↵erent beam energies. The arrows show the di↵erences
between data and simulation for the default radiative
corrections cuts for 115 MeV/c (left edge of the gray
band) and 210 MeV/c (right edge of the gray band).

compares data and simulation for the spectrum of a sin-
gle crystal and for the 9-bar light output sum from the
calorimeter. The data and simulation agree well, with a
small mismatch at the mean value. This di↵erence is due
to a mismatch in the energy to QDC conversion between
data and simulation for some channels, along with small
di↵erences in the air gap between bars.

Figures 14 and 15 compare the 9-bar-sum light output
response and resolution of data and simulation at di↵er-
ent momentum settings. Both data and simulation show
similar linear relationships in the light output response,
and similar light output resolution. While there is some
disagreement at higher momenta, in the region where
event cuts will be applied for radiative corrections (40%
of the beam energy), the di↵erences are small and the
agreement is better than our 2-MeV requirement. Note
that the energy to QDC channel conversion presented
here is based on a calibration at one momentum setting,
110 MeV/c – no tuning was done to adjust the light out-
put response of the simulation to match the data.

V. RECONSTRUCTED PHOTONS

Figure 16 presents an example of the light output dis-
tribution of the reconstructed photons in the calorimeter
for data and preliminary simulation. The default radia-
tive correction cut at E� < 0.4p0c, where p0 is the beam
electron momentum, is indicated by the dashed line. The
two distributions are similar in shape for the high en-
ergy photon events, with simulation being slightly nar-
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FIG. 16: Reconstructed photon QDC spectra of data
and simulation for 160 MeV/c electron scattering with
liquid hydrogen target. Black dashed line on the left
indicates the default radiative correction cut for this

momentum setting. Blue and red dashed lines indicate
the mean position of the Gaussian fit of the high energy

photon peaks.

rower in width. The slight mismatch in resolution is ex-
pected as the simulation is at a preliminary stage with the
calorimeter energy calibration based on one momentum
setting only, and as the scattered-particle scintillator en-
ergy cuts have not been precisely matched in simulation
and in data. The di↵erence in the lower energy events is
due to the di↵erence in threshold setting between data
and simulation. Both data and simulation show a promi-
nent peak from the high-energy photons emitted by some
scattering electrons, as expected. The radiative correc-
tion cut will remove these events, reducing the exper-
iment’s sensitivity to radiative corrections. The agree-
ment between the calibrated data and simulation indi-
cates that the calorimeter performance is su�cient to
obtain the needed experimental uncertainties. Further
tuning in the simulation calibration, including calibra-
tion using data taken at multiple energies and studying
possible time dependence of the calorimeter response will
improve the agreement to be better than requirements.

VI. SUMMARY

In order to have radiative corrections under control for
the MUSE scattering experiment, a lead-glass calorime-
ter detector was built to capture high-energy photons
from initial-state radiation. Studies show that the detec-
tor has an light output response and resolution su�cient
to identify and remove these events. The understand-
ing of the detector behavior is demonstrated by compar-
ing calibration measurements to simulation. With the
calorimeter, MUSE will be able to test and control ra-
diative corrections.
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FIG. 5: Calorimeter signals from a mixed, negatively
charged particle beam at 210 MeV/c, after the 379 ns

long delay.

each event, the few MHz beam rate leads to light out-
put from randomly coincident beam particles. The TDC
information helps to distinguish in-time clusters from a
scattering event from clusters from randomly coincident
beam particles that are also read out in the same event.

FIG. 6: Photographs of the calorimeter from three
perspectives. Top Left: Side view from beam left.
Bottom Left: Looking downstream towards the
upstream face of the calorimeter. Right: Looking

upstream at the full detector including the light-tight
box on top of the crystals and the PMTs.

Figure 6 shows pictures of the calorimeter detector
viewed from di↵erent directions. The front face of the
calorimeter is located 138.5 cm from the center of the
target. The detector covers an area of about 33 cm by
33 cm, or an angular range of about ±6.8� in horizon-
tal and vertical directions, which is su�cient to capture
most of the forward-going photons. Figure 7 shows the
simulated photon distribution at the front face of the
calorimeter before and after the calorimeter cuts. With
this calorimeter design, most of the high-energy-photon

events will be removed in the analysis, while the the lower
energy photon events will be retained.
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FIG. 7: Simulated photon distribution at the front face
of the calorimeter. Top: All photons. Bottom:

Distribution of photons after applying a calorimeter
energy cut. The central area with less counts compared

to the top plot reflects the size of the detector.

III. CALIBRATION PROCEDURES

The goal of the calibration procedure is to convert the
signal sizes in each detector channel, which are propor-
tional to the light generated by electrons in the crystals,
to an energy, so that the incident electron energies can be
determined. The calibration requires both gain match-
ing the calorimeter crystals and determining the light
output scale. Gain is the proportionality between the
output QDC values and the particle signal size in the
detector. We calibrate the gain for each channel to en-
sure the detector light output derived is consistent for
all channels. It is convenient to use both cosmic rays
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σe− / σe+

TPE estimate from J Bernauer fit, 
Chiral Dynamics 2018,        
https://pos.sissa.it/317/022/pdf

Anticipated Results

e- / e+

§ Stat. errors plotted, systematics <0.5%
§ Based on assumption of 1 year of running
§ ~20% of scattering data taken in 2023
§ Radius to 0.007 fm, Rμ–Re to 0.005 fm
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MUSE coverage and expected errors
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Anticipated Results
§ Anticipated form factor uncertainty
§ E. Cline, et al., 

SciPost Phys. Proc. 5, 023 (2021)
E. J. Downie – SPIN 2023 38

MUSE coverage and expected errors
38



2023-2025: MUSE production data taking

Nov. 2017 Oct. 2017

2016-2019: Assembly complete; Initial commissioning
2020-2022: Commissioning cont’d under initial Covid-19 constraints
2023: Started production data for 12 beam months over ~2 years

39



§ In 2023, MUSE started production data taking, anticipated for 
12 beam months over 2 years

§ MUSE aims for ~12 billion events, with a 60/40 split between 
LH2/Empty Cell scattering events 

§ Continued taking data in 2024 

§ Aim to finish 2025 

Status of data collection
40

Year LH2 (millions of 
events) 

Empty (millions 
of events) 

Total (millions 
of events) 

2023 1,473.03 1,260.49 2,733.52 
2024 2,259.24 1,556.74 3,815.98 



75 MUSE collaborators from 23 institutions in 5 countries:

George Washington University, Montgomery College, Argonne National Lab, Temple University, Duquesne 
University, Stony Brook University, Rutgers University, Hebrew University of Jerusalem, Tel Aviv University, 
University of Basel, Paul Scherrer Institute, Johannes Gutenberg-Universität, Hampton University, 
University of Michigan, University of South Carolina, Jefferson Lab, Massachusetts Institute of Technology, 
New Mexico State University, Technical University of Darmstadt, St. Mary’s University, Soreq Nuclear 
Research Center, Weizmann Institute, Old Dominion University              (March 2024)

MUon Scattering Experiment – MUSE
41

A. Afanasev, A. Akmal, M. Ali, A. Atencio, J. Arrington, H. Atac, C. Ayerbe-Gayoso, F. Benmokhtar, 
K. Bailey, N. Benmouna, J. Bernauer, W.J. Briscoe, T. Cao, D. Cioffi, E. Cline, D. Cohen, E.O. Cohen, 
C. Collicott, K. Deiters, J. Diefenbach, S. Dogra, E.J. Downie, I. Fernando, A. Flannery, T. Gautam, 
D. Ghosal, R. Gilman, A. Golossanov, R. Gothe, D. Higinbotham, J. Hirschman, D. Hornidge, Y. Ilieva, 
N. Kalantarians, M.J. Kim, M. Kohl, O. Koshchii, G. Korcyl, K. Korcyl, B. Krusche, I. Lavrukhin, L. Li, 
J. Lichtenstadt, W. Lin, A. Liyanage, W. Lorenzon, K.E. Mesick, Z. Meziani, P. M. Murthy,  J. Nazeer, 
T. O'Connor, P. Or, M. Paolone, T. Patel, E. Piasetzky, R. Ransome, R. Raymond, D. Reggiani, H. Reid, 
P.E. Reimer, R. Richards, A. Richter, G. Ron, P. Roy, T. Rostomyan, P. Salabura, A. Sarty, Y. Shamai, 
N. Sparveris, S. Strauch, N. Steinberg, V. Sulkosky, A.S. Tadepalli, M. Taragin, and N. Wuerfel



§ E.O. Cohen et al., 
Development of a scintillating-fiber beam detector for the MUSE experiment, 
NIM A 
https://doi.org/10.1016/j.nima.2016.01.044

§ P. Roy et al., 
A Liquid Hydrogen Target for the MUSE Experiment at PSI, NIM A 
https://doi.org/10.1016/j.nima.2020.164801

§ T. Rostomyan et al., 
Timing Detectors with SiPM read-out for the MUSE Experiment at PSI, NIM A 
https://doi.org/10.1016/j.nima.2019.162874

§ E.Cline, J. Bernauer, E.J. Downie, R. Gilman, 
MUSE: The MUon Scattering Experiment, Review of Particle Physics at PSI 
https://doi.org/10.21468/SciPostPhysProc.5

§ E. Cline et al., 
Characterization of Muon and Electron Beams in the Paul Scherrer Institute 
PiM1 Channel for the MUSE Experiment
PRC 105, 055201 (2022); arXiv: 2109.09508 
https://doi.org/10.1103/PhysRevC.105.055201
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Other MUSE publications

https://doi.org/10.1016/j.nima.2016.01.044
https://doi.org/10.1016/j.nima.2020.164801
https://doi.org/10.1016/j.nima.2019.162874
https://doi.org/10.21468/SciPostPhysProc.5
https://doi.org/10.1103/PhysRevC.105.055201


§ PRP not resolved after 14 years
§ 2016-2019 trend favored smaller radius, resulting in CODA2018,

supported by theory (most recent Lattice QCD)
§ 2020-2022 trend not stringently reconfirming a small radius, tensions
§ Unclear why larger radii should be considered wrong
§ Phase space for BSM physics has been narrowed by work of many
§ TPE exists but is too small to explain PRP
§ PRad-Mainz discrepancy points to potential issues with radiative 

corrections 

§ Await results from new experiments within near future:
– e-scattering w/o (PRad-II, MUSE), and w/ magn. field (ULQ2, MAGIX)
– μ-scattering: smaller rad. corr., cleaner than e? (MUSE, AMBER)

§ MUSE allows for comparison of ep and μp, as well as TPE for both

§ Conclusion
– There has been a trend, however we are not done yet 

Summary
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Backup
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Thank you for a beautiful conference !


