The proton radius puzzle: a status update

Jan C. Bernauer

LEES 2024, Sendai

Center for Frontiers Stony Brook In Nuclear Science University

Dr. Bernauer is partially supported by NSF grants PHY 2012114/2412703

What is "stuff"?

The matter around us is described by non-perturbative quantum chromodynamics. npQCD is hard. Simplest QCD system to study: Protons

What is "stuff"?

The matter around us is described by non-perturbative quantum chromodynamics. npQCD is hard. Simplest QCD system to study: Protons

100 years of protons!

What is "stuff"?

The matter around us is described by non-perturbative quantum chromodynamics. npQCD is hard. Simplest QCD system to study: Protons

100 years of protons! Proton is a composite system. It must have a size!

How big is it?

Three ways to measure the proton charge radius

» Normal hydrogen spectroscopy
 » Muonic hydrogen spectroscopy
 » Lepton-proton scattering

Elastic lepton-proton scattering

Method of choice: Lepton-proton scattering

- » Point-like probe
- » No strong force
- » Lepton interaction "straight-forward

Cross section for elastic scattering

$$\frac{\left(\frac{\partial\sigma}{\partial\Omega}\right)}{\left(\frac{\partial\sigma}{\partial\Omega}\right)_{\text{Mott}}} = \frac{1}{\varepsilon \left(1+\tau\right)} \left[\varepsilon G_E^2 \left(Q^2\right) + \tau G_M^2 \left(Q^2\right) \right]$$

with:

$$au = rac{Q^2}{4m_p^2}, \quad arepsilon = \left(1 + 2\left(1 + au
ight) an^2 rac{ heta_{arepsilon}}{2}
ight)^-$$

- » Rosenbluth formula
- » Electric and magnetic form factor encode the shape of the proton
- » Fourier transform (almost) gives the spatial distribution, in the Breit frame

Proton radius from scattering

$$\left\langle r_{E}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}G_{E}}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0} \quad \left\langle r_{M}^{2} \right\rangle = -6\hbar^{2} \left. \frac{\mathrm{d}\left(G_{M}/\mu_{P}\right)}{\mathrm{d}Q^{2}} \right|_{Q^{2}=0}$$

The Proton Radius puzzle

The Proton Radius puzzle

10

What's going on?

- » Are we measuring the same thing: Yes! G. Miller, Phys. Rev. C 99, 035202
- » Muon spectroscopy wrong?
 - » Data is robust
 - » A lot of theory required! Checked extensively.
- » Electron data wrong?
 - » Spectroscopy and scattering?
 - » Data or theory? Or fit?
- » BSM physics? Still alive and kicking, E.g.: Liu, Cloet, Miller Nucl. Phys. B 944 114638 (also explains $g_{\mu} 2$)

The face puzzle that launched a thousand ships experiments

Spectroscopy:

- » MPQ
- » York University
- » Paris
- » + measurements on *d*,³ He,⁴ He, ... Scattering:
 - » PRad (Jefferson Lab)
 - » Mainz:
 - » ISR,
 - » Next-gen FF
 - » ULQ2 Sendai
 - » MUSE
 - » AMBER@CERN

New results: MPQ (A. Beyer et al., Science 358, 79 (2017)).

13

New results: Paris (Fleurbaey et al., Phys. Rev. Lett. 120, 183001 (2018))

New results: York (Bezginov et al., Science 365, 1007–1012 (2019))

New results: MPQ again (Grinin et al., Science 370, 1061-1066 (2020))

New results: CSU (Brandt et al., Phys. Rev. Lett. 128, 023001 (2022))

Focus for scattering: test extrapolation

- » Require data at smaller Q^2
- » How can we get to smaller Q^2 ?
 - » Smaller scattering angle
 - » Smaller beam momentum

New results: Mainz ISR (Mihovilovič et al., Eur.Phys.J.A 57 (2021) 3, 107)

New results: PRad (Xiong et al., Nature 575 7781, 147-150 (2019))

A new puzzle

Upgraded target at Mainz

- » Gas-Jet target: pure hydrogen target, point-like. Eliminate major background.
- » Designed for MAGIX, but run at A1 as a prototype exp.

Upgraded target at Mainz

- » Gas-Jet target: pure hydrogen target, point-like. Eliminate major background.
- » Designed for MAGIX, but run at A1 as a prototype exp.
- » COVID limited reach: Prefers PRad, but not decisive.

Ongoing/future experiments

- » ULQ2@Sendai: *ep* with CH2 target. (see talks by Honda and Legris today at 11, 11:30)
- » AMBER@CERN: μp , detecting proton, at many-GeV beam energies (see talk by Friedrich on Thursday at 3pm)
- » MUSE@PSI: $e/\mu p$, direct lepton universality check (see talk by Kohl on Thursday at 2:30pm)
- » PRad-II: larger momentum range (see talk by Xiong today at 10)
- » MAGIX@MESA: gas-jet, also measure G_M and magnetic radius (see next talk)

Projections

Complementarity: Kinematical Regime

» Small Q^2

- » Large angles, small momentum. Also access G_M
- » Large momentum, small angle. $\epsilon = 1$, negligible G_M
- » Tests different part of radiative corrections.
- » N.B.: Size of radiative corrections do not inform uncertainty. Cancellations of two large corrections!

Complementarity

Exp	Regime		433		Comments
PRAD2@JLAB	small angle		North St		
ULQ2@TOHOKU	large angle	1 aller	The second	A STATE OF STATE	
MAGIX@MESA	large angle	1914	ALC: Y	NRA PORT	
AMBER@CERN	small angle	T. HEAR			NICA I
MUSE@PSI	large angle		apres ?		

Settings

- » Cover Q² range. Always: different energies
- » Angle coverage:
 - » Large acceptance ("few")
 » Need to control position dependence
 » Small acceptance ("many")
 » Need to control time dependence

Complementarity

Exp	Regime	Settings			Comments
PRAD2@JLAB	small angle	few	1. Const		
ULQ2@TOHOKU	large angle	many	Elen	A STATE OF THE STA	
MAGIX@MESA	large angle	many	1495	NRA TO SAL	
AMBER@CERN	small angle	few			SIS NUCH
MUSE@PSI	large angle	few	a final		

Particle types

» e/μ :

- » Muons: Different, typically smaller radiative corrections
- » Test lepton universality
- » Antiparticles:
 - » Test Two-Photon-Exchange and odd orders of radiative corrections. (believed to be understood, but large Q^2 TPE data different from Theory)

Complementarity

Exp	Regime	Settings	e/μ	Antiparticle	Comments
PRAD2@JLAB	small angle	few	<i>e</i> ⁻	no	
ULQ2@TOHOKU	large angle	many		no	G_M , light nuclei
MAGIX@MESA	large angle	many		no	G_M , light nuclei
AMBER@CERN	small angle	few	$-\mu$	yes	measure p!
MUSE@PSI	large angle	few	e/μ	yes	measure π

What do we know about G_M

What do we know about G_M

What do we know about G_M

Mainz future plans

- » Cluster jet target to kill major contributions to systematic errors
- » Repeat ISR with new target (mainly G_E)
- » Use new target also for classical approach

What we will know about G_M

Summary

- » After 14 years, the puzzle still stands, but has changed shape
- » Spectroscopy has many new results, mixed, but with weight behind the smaller radius
 - » unknown what causes difference in spectroscopy results
- » Scattering; Values disagreeing Situation still unclear
- » More scattering data in the pipeline
- » Don't forget about magnetic radius!

Timeline of proton radius results

Comments on some newer fitting results 2010: >0.870 Hill, Paz: old data, z expansion with disp. bounds » Bounds on infinite exp. \rightarrow bounds for truncated exp.? 2012: 0.840(10) Lorenz, Hammer, Meissner: Disp. relation fit. » Same value but a lot more data. Probably model dominated. 2014: 0.84 Lorenz, Meissner: z expansion without bounds » Fit did not converge. In real minimum, large radius is found. 2014: 0.8989(1) Gracyk/Juszczak: Bayesian estimation » Interesting technique, unbelievable? small errors 2016: 0.84? Higinbotham: F-Test to select max. order » Misunderstood F-test. Absence of proof \neq proof of absence. 2016: 0.84? Horbatsch/Hessels/Griffioen/Carlson/Maddox... Low-Q » Low-Q fits with low order don't work. 2018: XXX Yan/Higinbotham/...

» Small radius fraction finally does bias testing

MUSE: Predicted performance

 Absolute radius extraction uncertainties similar to current exp's.

MUSE: Predicted performance

- Absolute radius extraction uncertainties similar to current exp's.
- » Difference: Common uncertainties cancel!
- » → factor two more sensitivity

MUSE can verify 7σ effect with similar significance!

Mainz: Volume of Data

New results

A different puzzle?

Magnetic form factor structures

