Electromagnetic structure of light nuclei from chiral EFT

In collaboration with: Arseniy Filin, Daniel Möller, Vadim Baru, Christopher Körber, Hermann Krebs, Andreas Nogga and Patrick Reinert

- Introduction
- Nuclear forces and e.m. currents in χEFT
- E.m. structure of the deuteron
- Beyond the deuteron
- Summary

Updates since 2023:

- Error analysis
- Insights into scaling of MECs
- First results for the magnetic FFs

Bundesministerium für Bildung und Forschung

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Experimental data

Number of neutrons N

From QCD to nuclear physics

The Standard Model (QCD, ...)

Schwinger-Dyson , large-N_c, ...

Anatomy of the calculation

+ numerical solution of the Faddeev-Yakubovsky equations

- data driven: Use np + pp data, ³H(e) and ⁴He BEs, up-to-date parametrizations of the nucleon FFs and ²H, ⁴He FF data (assuming 2γ effects are small...)
- no reliance on charge densities (everything expressed in terms of FFs)

	Two-nucleon force	Three-nucleon force	Four-nucleon force	
LO:	X +			
NLO:	XAAXI			
N²LO:		$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \chi \qquad $		
N ³ LO:	X H K	A + X	M H	
N⁴LO:				

 χEFT as a precision tool in the 2N sector

- N⁴LO⁺: currently most accurate and precise NN interactions on the market
- clear evidence of the TPEP from NN data
- Bayesian truncation-error estimation

- almost no residual cutoff dependence
 - \Rightarrow precision 2N physics from χEFT

Semi-local regularization in momentum space Reinert, Krebs, EE, EPJA 54 (2018) 86; PRL 126 (2021) 092501 $V_{1\pi}(q) = \frac{\alpha}{\vec{q}^2 + M_{\pi}^2} e^{-\frac{\vec{q}^2 + M_{\pi}^2}{\Lambda^2}} + \text{subtraction}, \qquad V_{2\pi}(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\infty} d\mu \mu \frac{\rho(\mu)}{\vec{q}^2 + \mu^2} e^{-\frac{\vec{q}^2 + \mu^2}{2\Lambda^2}} + \text{subtractions}$ + nonlocal (Gaussian) cutoff for contacts

	Two-nucleon force	Three-nucleon force	Four-nucleon force	
LO:	X +			
NLO:	XAAXI			
N²LO:		$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \chi \qquad $		
N ³ LO:	X H K	A + X	M H	
N⁴LO:				

	Two-nucleon force	Three-nucleon force	-nucleon force Four-nucleon force	
LO:	$X \vdash$			
NLO:	X04XI			
N²LO:		$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$	_	
N ³ LO:	X H K			
N⁴LO:				

Loop diagrams are calculated using DimReg, but the Schrödinger equation is regularized with a cutoff... But: Mixing DimReg with CutoffReg violates χ-symmetry EE, Krebs, Reinert, Front. In Phys. 8 (20) ⇒ 3NF beyond N²LO & 4NF must be re-derived using invariant CutoffReg like, e.g., Gradient Flow Krebs, EE, PRC 110 (2024) 04403; 04404

The deuteron

Arseniy Filin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Patrick Reinert, Phys. Rev. Lett. 124 (2020) 082501; Phys. Rev. C103 (2021) 024313

- Both the nuclear force and the 2N charge density are available to N⁴LO

— Simple numerics

Electromagnetic FFs of the deuteron

Filin, Möller, Baru, EE, Krebs, Reinert, PRL 124 (2020) 082501; PRC 103 (2021) 024313

Charge and guadrupole form factors of the deuteron at N⁴LO

The charge and structure radius:

$$r_d^2 = (-6) \frac{\partial G_C(Q^2)}{\partial Q^2} \bigg|_{Q^2 = 0} = r_{str}^2 + r_p^2 + r_n^2 + \frac{3}{4m_p^2}$$

Combining our result $r_{\text{str}} = 1.9729^{+0.0015}_{-0.0012}$ fm with very precise isotope-shift spectroscopy data for $r_d^2 - r_p^2$, we determine the neutron m.s. charge radius:

 $r_n^2 = -0.105^{+0.005}_{-0.006} \text{ fm}^2$


```
Q_{\rm d}^{\rm exp} = 0.285\,699(15)(18)\,{\rm fm}^2
             Puchalski et al., PRL 125 (2020)
```

Electromagnetic FFs of the deuteron

Filin, Möller, Baru, EE, Krebs, Reinert, PRL 124 (2020) 082501; PRC 103 (2021) 024313

Charge and quadrupole form factors of the deuteron at N⁴LO

The charge and structure radius:

$$r_d^2 = (-6) \frac{\partial G_C(Q^2)}{\partial Q^2} \bigg|_{Q^2 = 0} = r_{str}^2 + r_p^2 + r_n^2 + \frac{3}{4m_p^2}$$

Combining our result $r_{\rm str} = 1.9729^{+0.0015}_{-0.0012}$ fm with very precise isotope-shift spectroscopy data for $r_d^2 - r_p^2$, we determine the neutron m.s. charge radius:

 $r_n^2 = -0.105^{+0.005}_{-0.006} \text{ fm}^2$

Arseniy Filin et al., preliminary

The fourth-order moment $\langle r_d^4 \rangle := 60 G_C''(0)$ can be measured in the ULQ2 exp Toshimi Suda et al.

$$\langle r_d^4 \rangle = r_{\text{str}}^{(4)} + \frac{10}{3} r_{\text{str}}^{(2)} \left(r_n^{(2)} + r_p^{(2)} + \frac{3}{4m^2} \right) + \left(r_n^{(4)} + \frac{5}{2m^2} r_n^{(2)} \right) + \left(r_p^{(4)} + \frac{5}{2m^2} r_p^{(2)} + \frac{45}{16m^4} \right)$$

Arseniy Filin et al., preliminary

The fourth-order moment $\langle r_d^4 \rangle := 60 G_C''(0)$ can be measured in the ULQ2 exp Toshimi Suda et al.

$$\langle r_d^4 \rangle = r_{\rm str}^{(4)} + \frac{10}{3} r_{\rm str}^{(2)} \left(r_n^{(2)} + r_p^{(2)} + \frac{3}{4m^2} \right) + \left(r_n^{(4)} + \frac{5}{2m^2} r_n^{(2)} \right) + \left(r_p^{(4)} + \frac{5}{2m^2} r_p^{(2)} + \frac{45}{16m^4} \right)$$

Results for
$$\Lambda = 500$$
 MeV:
(preliminary, likely to change) $r_{\text{str}}^{(4)} = \underbrace{r_{\text{matter}}^{(4)}}_{55.442} + \underbrace{r_{\text{boost}}^{(4)}}_{0.215} + \underbrace{r_{\text{SO}}^{(4)}}_{0.007} + \underbrace{r_{\text{SO}}^{(4)}}_{0.025} + \underbrace{r_{\text{2N,OPE}}^{(4)}}_{0.008} = 55.68(5) \text{ fm}^4$

Error budget (preliminary):

Truncation (N⁴LO): ± 0.035 , π N LECs: ± 0.005 , NN LECs: ± 0.04 , other errors negligible

Arseniy Filin et al., preliminary

The fourth-order moment $\langle r_d^4 \rangle := 60 G_C''(0)$ can be measured in the ULQ2 exp Toshimi Suda et al.

$$\langle r_d^4 \rangle = r_{\rm str}^{(4)} + \frac{10}{3} r_{\rm str}^{(2)} \left(r_n^{(2)} + r_p^{(2)} + \frac{3}{4m^2} \right) + \left(r_n^{(4)} + \frac{5}{2m^2} r_n^{(2)} \right) + \left(r_p^{(4)} + \frac{5}{2m^2} r_p^{(2)} + \frac{45}{16m^4} \right)$$

Results for
$$\Lambda = 500$$
 MeV:
(preliminary, likely to change) $r_{\text{str}}^{(4)} = \underbrace{r_{\text{matter}}^{(4)}}_{55.442} + \underbrace{r_{\text{boost}}^{(4)}}_{0.215} + \underbrace{r_{\text{SO}}^{(4)}}_{0.007} + \underbrace{r_{\text{SO}}^{(4)}}_{0.025} + \underbrace{r_{\text{SO}}^{(4)}}_{0.008} = 55.68(5) \text{ fm}^4$

Error budget (preliminary):

Truncation (N⁴LO): ± 0.035 , π N LECs: ± 0.005 , NN LECs: ± 0.04 , other errors negligible

Arseniy Filin et al., preliminary

The fourth-order moment $\langle r_d^4 \rangle := 60 G_C''(0)$ can be measured in the ULQ2 exp Toshimi Suda et al.

$$\langle r_d^4 \rangle = r_{\text{str}}^{(4)} + \frac{10}{3} r_{\text{str}}^{(2)} \left(r_n^{(2)} + r_p^{(2)} + \frac{3}{4m^2} \right) + \left(r_n^{(4)} + \frac{5}{2m^2} r_n^{(2)} \right) + \left(r_p^{(4)} + \frac{5}{2m^2} r_p^{(2)} + \frac{45}{16m^4} \right)$$

Results for
$$\Lambda = 500$$
 MeV:
(preliminary, likely to change) $r_{\text{str}}^{(4)} = \underbrace{r_{\text{matter}}^{(4)}}_{55.442} + \underbrace{r_{\text{boost}}^{(4)}}_{0.215} + \underbrace{r_{\text{SO}}^{(4)}}_{0.007} + \underbrace{r_{\text{SO}}^{(4)}}_{0.025} + \underbrace{r_{\text{SO}}^{(4)}}_{0.008} = 55.68(5) \text{ fm}^4$

Error budget (preliminary):

Truncation (N⁴LO): ± 0.035 , π N LECs: ± 0.005 , NN LECs: ± 0.04 , other errors negligible

Alternative determination of the nucleon isoscalar radius?

$$r_p^{(2)} + r_n^{(2)} = \frac{\overbrace{[\langle r_d^4 \rangle - r_p^{(4)} - r_n^{(4)}]}^{1\% \text{ accuracy for } r_n^{(2)} + r_p^{(2)} \dots}{\frac{10}{3}r_{\text{str}}^{(2)} + \frac{5}{2m^2}} - \frac{3}{4m^2}$$

Generalization to A = 3, 4 systems

Arseniy Filin, Christopher Körber, Hermann Krebs, Daniel Möller, Andreas Nogga, Patrick Reinert, in preparation

... is a difficult task:

- 3NF beyond N²LO not yet available
 - \rightarrow use the strong correlations between BEs & matter radii to *implicitly* include 3NF effects
- difficult to account for relativistic corrections beyond ²H
 - \rightarrow irreps of the Poincare group on A-particle Hilbert spaces a-la Polyzou et al.
- iso-vector NN charge density not yet available beyond N²LO
 - \rightarrow irrelevant for 4He; for A = 3 focus on the iso-scalar linear combination only
- computational accuracy for evaluating the A = 3,4 FFs
 - → semi-analytical methods that exploit the local + separable form of the 2N charge density
- many sources of uncertainty
 - \rightarrow comprehensive error analysis

The charge FF of ⁴He

Arseniy Filin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Andreas Nogga, Patrick Reinert, in preparation

0.0

6

The charge FF of ⁴He

Arseniy Filin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Andreas Nogga, Patrick Reinert, in preparation

Q fm¹

C

The structure radius of ⁴He

Arseniy Filin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Andreas Nogga, Patrick Reinert, in preparation

Preliminary result for the ⁴He structure radius:

 $r_{\rm str}(^{4}{\rm He}) = 1.4758 \pm 0.0028_{\rm trunc} \pm 0.0011_{\rm stat} \pm 0.0010_{\rm nucl-FF} \, {\rm fm}$ (Preliminary)

Consistency check (residual cutoff dependence):

Nucleon size from the ⁴He charge radius

Arseniy Filin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Andreas Nogga, Patrick Reinert, in preparation

Alternatively: Nucleon size from ⁴He radius

$$r_{\rm C}^2({}^{4}{\rm He}) = r_{\rm str}^2({}^{4}{\rm He}) + \left(r_p^2 + \frac{3}{4m_p^2}\right) + r_n^2 \Rightarrow$$

$$r_p^2 + r_n^2 = (0.607 \pm 0.010) \text{ fm}^2$$

 $r_p = (0.844 \pm 0.007) \text{ fm}$

preliminary (own determination of rn)

Proton charge radius

Isoscalar charge radius of ³H, ³He

Arseniy Filin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Andreas Nogga, Patrick Reinert, in preparation

Predicted value of the isoscalar 3N charge radius $r_{\rm C}^{\rm isoscalar} = \sqrt{\frac{1}{3}(r_{\rm C}^{3H})^2 + \frac{2}{3}(r_{\rm C}^{3He})^2}$

$$r_{\rm C}^{\rm isoscalar} = (1.9060 \pm 0.0026) \, {\rm fm}$$

preliminary (own determination of rn)

Isoscalar charge radius of ³H, ³He

Arseniy Filin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Andreas Nogga, Patrick Reinert, in preparation

Predicted value of the isoscalar 3N charge radius $r_{\rm C}^{\rm isoscalar} = \sqrt{\frac{1}{3}(r_{\rm C}^{3H})^2 + \frac{2}{3}(r_{\rm C}^{3He})^2}$

 $r_{\rm C}^{\rm isoscalar} = (1.9060 \pm 0.0026) \,\rm fm$

preliminary (own determination of rn)

Experimental value:

 $r_{C, exp}^{\text{isoscalar}} = (1.9010 \pm 0.0260) \, fm$

error dominated by the ³H datum

⇒ our prediction is 10x more precise than the current experimental value

The ongoing T-REX experiment in Mainz [Pohl et al.] aims at measuring the ³H charge radius within ± 0.0002 fm (i.e., 400x more precise) \Rightarrow the isoscalar radius will be known within ± 0.0009 fm

 \Rightarrow precision test of nuclear chiral EFT

³He r = 1.97007(94)fm 0.05 %

> CREMA 2023 arXiv:2305.11679

³H = 1.7xxx(2)fm TREX Mainz [in progress]

r = 1.7550(860) fmAmroun et al. 1994

Scaling of our results

Arseniy Filin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Andreas Nogga, Patrick Reinert, in preparation

$$r_{C}^{2}(^{2}H) = 1r_{p}^{2} + 1r_{DF}^{2} + 1r_{n}^{2} + 3.8746 - 0.0161M_{1} - 0.0047M_{2}$$

$$r_{C}^{2}(^{3}H) = 1r_{p}^{2} + 1r_{DF}^{2} + 2r_{n}^{2} + 2.5148 - 0.0326M_{1} - 0.0089M_{2} - 0.0238M_{3} + 0.0158M_{4}$$

$$2r_{C}^{2}(^{3}He) = 2r_{p}^{2} + 2r_{DF}^{2} + 1r_{n}^{2} + 6.2821 - 0.0321M_{1} - 0.0088M_{2} - 0.0230M_{3} - 0.0151M_{4}$$

$$2r_{C}^{2}(^{4}He) = 2r_{p}^{2} + 2r_{DF}^{2} + 2r_{n}^{2} + 4.1117 - 0.0765M_{1} - 0.0189M_{2} - 0.0609M_{3}$$

nucleon size

structure radii

 $Z \times r_C^2$

Slope of charge FF assuming F(0) = Z

Cutoff 450 MeV

all numbers in fm^2

All LECs in dimensionless natural units

M4 is isovector contact interaction similar to isoscalar M3

Scaling of our results

Arseniy Filin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Andreas Nogga, Patrick Reinert, in preparation

$$r_{C}^{2}(^{2}H) = 1r_{p}^{2} + 1r_{DF}^{2} + 1r_{n}^{2} + 3.8746 - 0.0161M_{1} - 0.0047M_{2}$$

$$r_{C}^{2}(^{3}H) = 1r_{p}^{2} + 1r_{DF}^{2} + 2r_{n}^{2} + 2.5148 - 0.0326M_{1} - 0.0089M_{2} - 0.0238M_{3} + 0.0158M_{4}$$

$$2r_{C}^{2}(^{3}He) = 2r_{p}^{2} + 2r_{DF}^{2} + 1r_{n}^{2} + 6.2821 - 0.0321M_{1} - 0.0088M_{2} - 0.0230M_{3} - 0.0151M_{4}$$

$$2r_{C}^{2}(^{4}He) = 2r_{p}^{2} + 2r_{DF}^{2} + 2r_{n}^{2} + 4.1117 - 0.0765M_{1} - 0.0189M_{2} - 0.0609M_{3}$$

$$L^{4}_{D} \overset{\text{N}}{=} 0 \overset{\text$$

Cutoff 450 MeV

all numbers in fm²

All LECs in dimensionless natural units

M4 is isovector contact interaction similar to isoscalar M3

Scaling of our results

Arseniy Filin, Vadim Baru, EE, Hermann Krebs, Daniel Möller, Andreas Nogga, Patrick Reinert, in preparation

$$r_{C}^{2}(^{2}H) = 1r_{p}^{2} + 1r_{DF}^{2} + 1r_{n}^{2} + 3.8746 - 0.0161M_{1} - 0.0047M_{2}$$

$$r_{C}^{2}(^{3}H) = 1r_{p}^{2} + 1r_{DF}^{2} + 2r_{n}^{2} + 2.5148 - 0.0326M_{1} - 0.0089M_{2} - 0.0238M_{3} + 0.0158M_{4}$$

$$2r_{C}^{2}(^{3}He) = 2r_{p}^{2} + 2r_{DF}^{2} + 1r_{n}^{2} + 6.2821 - 0.0321M_{1} - 0.0088M_{2} - 0.0230M_{3} - 0.0151M_{4}$$

$$2r_{C}^{2}(^{4}He) = 2r_{p}^{2} + 2r_{DF}^{2} + 2r_{n}^{2} + 4.1117 - 0.0765M_{1} - 0.0189M_{2} - 0.0609M_{3}$$

$$L^{4}_{0} = 0$$

$$r_{D}^{0}_{1} = 0$$

$$r_{D}^{0}_$$

Cutoff 450 MeV

all numbers in fm^2

All LECs in dimensionless natural units

M4 is isovector contact interaction similar to isoscalar M3

The ⁴He and the isoscalar A = 3 charge radii depend essentially on a single combination of LEC

Magnetic FFs of ²H and ³H(e)

Daniel Möller, PhD thesis, Bochum, 2024; Daniel Möller et al., in preparation

	$\mu_{^{3}\mathrm{H(e)}}^{\mathrm{iso-s}}$ [in μ_{N}]	$r_{ m ^2H}^2$ [fm ²]	$r_{^{3}\mathrm{H(e),iso-s}}^{2}$ [fm ²]
Theory (N ⁴ LO)	0.4219(25) _{tr}	4.384(26) _{tr} (138) _{nucl}	$2.280(14)_{tr}(128)_{nucl}$
Experiment	0.425669	4.29(7) Sick '01	2.1(2.4) Sick '14; Amroun et al. '94

Summary and outlook

- Charge & quadrupole FFs of ²H are in good shape (N⁴LO, high-precision)
- Other systems and processes are limited to N²LO accuracy due to unavailability of (consistently regularized) many-body forces & exchange currents

 \Rightarrow symmetry-preserving gradient flow regularization Krebs, EE '24

- Correlations between BEs and radii can be employed to obtain precise results for the charge FFs of ⁴He & ³H(e)_{isoscalar} already at this stage Arseniy Filin et al., in progress
- ⁴He: Nuclear effects under control \Rightarrow new source of information about 1N radii
- ³He/³H: prediction for the isoscalar 3N charge radius is more precise than exp

Thank you for your attention

Error analysis for the radii (ongoing)

Type of error	$\delta r^2_{ m A=3,str}$	$\delta r^2_{4{ m He},{ m str}}$
Statistical uncertainties of LECs determined from π N, NN, p 2 H, e^2 H and e^4 He data		
(a) NN LECs extracted from the database 23 of mutually consistent np and pp data	14	6
(b) πN LECs from matching χEFT to the Roy-Steiner analysis of πN scattering 79	4	3
(c) LEC c_D in the 3NF extracted from p ² H differential cross section data of 52	4	6
(d) LECs M_i in $\hat{ ho}_{2\mathrm{N}}$ extracted from ${}^2H^{86,87}$ and ${}^4He^{69-75}$ form factor data	21	32
Total statistical uncertainty	26	33
Theory uncertainties		
(e) Truncation of the χ EFT expansion	69	83
(f) Parametrizations of the nucleon form factors	XXX	30
Systematic uncertainties		
(g) Approximate treatment of relativistic effects	5	18

all numbers very preliminary...

Implicit treatment of higher-order 3NFs

