

Status of lattice QCD determination of nucleon form factors at the physical point and its challenge for the proton charge radius

Shoichi Sasaki for PACS Collaboration

In collaboration with: Y. Aoki, K.-I. Ishikawa, Y. Kuramashi, K. Sato, E. Shintani, R. Tsuji, H. Watanabe and T. Yamazaki

PACS Collaboration Members

PACS=Processor Array for Continuum Simulation

N. Ishizuka, Y. Kuramashi, E. Shintani, N. Ukita, T. Yamazaki, T. Yoshie

Y. Aoki, Y. Nakamura,

K.-I. Ishikawa, Y. Namekawa

S. Sasaki

Hiroshima Univ.

Tohoku Univ.

RIKEN-CCS

Tsukuba Univ.

PACS Collaboration Members

PACS=Processor Array for Continuum Simulation

N. Ishizuka, Y. Kuramashi, E. Shintani, N. Ukita, T. Yamazaki, T. Yoshie

Y. Aoki, Y. Nakamura,

K.-I. Ishikawa, Y. Namekawa

S. Sasaki

Tohoku Univ.

+ R. Tsuji (KEK), K. Sato (Tsukuba) and H. Watanabe (YITP) PACS10 Nucleon Project

RIKEN-CCS

Hiroshima Univ.

Tsukuba Univ.

Nucleon structure

Proton radius puzzle (electron-nucleon scattering)

Electric/magnetic form factor (rms radius)

Precise knowledge of neutrino-nucleon scattering

Axial-vector from factor (axial charge & axial radius)

An important opportunity to develop our understanding of nucleon structure using lattice QCD simulations

Our Physics Targets

Nucleon structure = properties of single nucleon

Vucleon matrix elements

Vector
$$\langle p'|V^{\mu}(q)|p\rangle = \overline{u}(p') \left[\gamma^{\mu}F_1(q^2) + i\sigma^{\mu\nu}\frac{q_{\nu}}{2M}F_2(q^2)\right]u(p)$$
 weak and elemag

$$=\overline{u}(p')\left[\frac{(p'+p)^{\mu}}{2M}\frac{G_E(q^2) - \frac{q^2}{4M^2}G_M(q^2)}{1 - \frac{q^2}{4M^2}} + i\sigma^{\mu\nu}\frac{q_{\nu}}{2M}G_M(q^2)\right]u(p)$$

Axial-vector $\langle p'|A^{\mu}(q)|p\rangle = \overline{u}(p') \left[\gamma^{\mu}\gamma_5 F_A(q^2) + iq^{\mu}\gamma_5 F_P(q^2)\right] u(p)$ only weak

Two nucleon matrix elements can be described in terms of four types of nucleon elastic form factors $G_E(q^2), G_M(q^2), F_A(q^2), F_P(q^2)$

Our Physics Targets

Nucleon structure = properties of single nucleon

Vucleon matrix elements

Vector
$$\langle p'|V^{\mu}(q)|p\rangle = \overline{u}(p')\left[\gamma^{\mu}F_{1}(q^{2}) + i\sigma^{\mu\nu}\frac{q_{\nu}}{2M}F_{2}(q^{2})\right]u(p)$$
 weak and elemag

$$=\overline{u}(p')\left[\frac{(p'+p)^{\mu}}{2M}\frac{G_{E}(q^{2})-\frac{q^{2}}{4M^{2}}G_{M}(q^{2})}{1-\frac{q^{2}}{4M^{2}}}+i\sigma^{\mu\nu}\frac{q_{\nu}}{2M}G_{M}(q^{2})\right]u(p)$$

Axial-vector $\langle p'|A^{\mu}(q)|p\rangle = \overline{u}(p') \left[\gamma^{\mu}\gamma F_A(q^2) + iq^{\mu}\gamma_5 F_P(q^2)\right] u(p)$ only weak axial form factor: $F_A(q^2) = F_A(0) \left(1 - \frac{q^2}{6} \langle r^2 \rangle_A + \mathcal{O}(q^4)\right)$ $F_A(0) = g_A$ axial rms radius: $\sqrt{\langle r_A^2 \rangle} = 0.67(1)$ fm $< \sqrt{\langle r_E^2 \rangle_p} = 0.84 - 0.88$ fm \longrightarrow Precise knowledge of neutrino-nucleon scattering

→ Search for $\nu_{\mu} \rightarrow \nu_{e}$ oscillation at NOvA and T2K

Our Physics Targets

Nucleon structure = properties of single nucleon

Vucleon matrix elements

Vector
$$\langle p'|V^{\mu}(q)|p\rangle = \overline{u}(p')\left[\gamma^{\mu}F_{1}(q^{2}) + i\sigma^{\mu\nu}\frac{q_{\nu}}{2M}F_{2}(q^{2})\right]u(p)$$
 weak and elemag

$$=\overline{u}(p')\left[\frac{(p'+p)^{\mu}}{2M}\frac{G_E(q^2) - \frac{q^2}{4M^2}G_M(q^2)}{1 - \frac{q^2}{4M^2}} + i\sigma^{\mu\nu}\frac{q_{\nu}}{2M}G_M(q^2)\right]u(p)$$

Axial-vector $\langle p'|A^{\mu}(q)|p\rangle = \overline{u}(p') \left[\gamma^{\mu}\gamma_{5}F_{A}(q^{2}) + iq^{\mu}\gamma_{5}F_{P}(q^{2})\right]u(p)$ only weak

Five basic quantities:
$$g_A = F_A(0), \mu = G_M(0), G_{E,M}(q^2) = G_{E,M}(0) \left(1 - \frac{1}{6}r_{E,M}^2 q^2 + \mathcal{O}(q^4)\right)$$

axial charge (g_A), magnetic moment (μ), charge radius (r_E), magnetic radius (r_M), axial radius (r_A)

R. Tsuji et al., PRD109 (2024) 094505

Lattice Quantum Chromodynamics
 Fields defined on discrete space-time

 introduce cutoff in a gauge-invariant way

 $U_{\mu}(n) = e^{iagA_{\mu}(n)}$

L

Euclidean space : imaginary time $\tau = it$

Path integral quantization

compute the quantum expectation value of a physical observable using a Monte Carlo method

 $\langle O \rangle = \frac{1}{\mathcal{Z}} \int D[U] \int D[\psi] D[\overline{\psi}] O(U, \psi, \overline{\psi}) e^{-S_{\text{QCD}}(U, \psi, \overline{\psi})}$ Lattice QCD action

Uncertainties in lattice QCDStatistical uncertainties (Monte Carlo Method) $\langle O \rangle \approx \langle O \rangle_N + \delta \langle O \rangle_N$ $\langle O \rangle_N \equiv \frac{1}{N} \sum_{k=1}^N O(\{U_k\}), \ \delta \langle O \rangle_N \equiv \sqrt{\frac{\langle O^2 \rangle_N - \langle O \rangle_N^2}{N-1}}$

Four main systematic uncertainties

- Quark vacuum polarization : the number of dynamical quarks (Nf)
- Finite lattice spacing (a) : regularization of UV divergence: Λ~1/a
- Finite volume (L) : finite number of lattice grids: $(Ns)^3 \times Nt = L^3 \times T$
- Chiral (quark mass) extrapolation to the physical point: M_{π}

Limited by the size of computing resources

World status of lattice QCD projects near the physical point

Plenary talk at Lattice 2022 given by Finkenrath

World status of lattice QCD projects near the physical point

Plenary talk at Lattice 2022 given by Finkenrath

Our strategy

✓ Use **2+1 flavor** PACS10 gauge configurations

• Physical point \rightarrow No chiral extrapolation

- Very large spatial volume (L) \rightarrow No finite size effect & Low q² physics
- ▶ 3 different lattice cut-offs (*a*) \rightarrow Continuum limit (currently not available)
- \checkmark All-mode averaging technique \rightarrow High precision measurements

 \checkmark Highly tuned smearing \rightarrow Suppression of excited-state contributions

✓ Model-independent Q² fit by z-Expansion method

✓ **Disclaimer:** only **iso-vector** quantities are considered

3 points to note

- Why is such a large spatial size (~10 fm) is necessary?
- 2. What is the significance of the suppression of excited-state contributions?
- 3. Why only iso-vector quantities are considered?

Why is such a large spatial size (~10 fm) is necessary?

How Large Spatial Size is Necessary?

✓ can access the small momentum transfer up to 0.01 [GeV²] for L=10 fm

How Large Spatial Size is Necessary?

v can access the small momentum transfer up to 0.01 [GeV²] for L=10 fm

How Large Spatial Size is Necessary?

✓ can access the small momentum transfer up to 0.01 [GeV²] for L=10 fm

What is the significance of the suppression of excited-state contributions?

Nucleon correlation functions

- Compute **2-pt** and **3-pt** functions, using nucleon interpolator \mathcal{H} and operator insertion \mathcal{O}

 $\begin{aligned} \langle \mathcal{H}(t)\mathcal{H}^{\dagger}(0)\rangle &= \sum_{i} |\langle 0|\mathcal{H}(0)|i\rangle|^{2} e^{-M_{i}t} \\ &\to |\langle 0|\mathcal{H}|N\rangle|^{2} e^{-M_{N}t} \end{aligned}$

 $\sum_{i} |i\rangle \langle i| = 1$

a sum of exponentials

 $\langle \mathcal{H}(t)\mathcal{O}(t')\mathcal{H}^{\dagger}(0)\rangle = \sum_{i,j} e^{-M_{i}(t-t')} \langle 0|\mathcal{H}|i\rangle \langle i|\mathcal{O}|j\rangle \langle j|\mathcal{H}^{\dagger}|0\rangle e^{-M_{j}t'}$ $\rightarrow |\langle 0|\mathcal{H}|N\rangle|^{2} \langle N|\mathcal{O}|N\rangle e^{-M_{N}t} \quad t_{op}=t'$ $t-t' \gg 0 \quad \text{no t'-dependence} \quad \underbrace{t_{op}=t'}_{t_{op}=t} \quad t_{snk}=t \quad t_{src}=0$

Ratio of 2-pt and 3-pt functions

Imatrix elements (form factors) can be determined from ratios of the 3-pt and 2-pt functions

Ratio of 2-pt and 3-pt functions

Imatrix elements (form factors) can be determined from ratios of the 3-pt and 2-pt functions

 $\frac{\langle \mathcal{H}(t)\mathcal{O}(t')\mathcal{H}^{\dagger}(0)\rangle}{\langle \mathcal{H}(t)\mathcal{H}^{\dagger}(0)\rangle} \rightarrow \langle N|\mathcal{O}|N\rangle + \underbrace{Be^{-\Delta E(t'-t_{\rm src})}}_{Be^{-\Delta E(t'-t_{\rm src})}} + \underbrace{Ce^{-\Delta E(t_{\rm snk}-t_{\rm snk})}}_{Ce^{-\Delta E(t_{\rm snk}-t_{\rm snk})}}$

Why only iso-vector quantities are considered?

Iso-vector quantities

1 _

2

electromagnetic current

$$J_{\mu}^{\text{em}} = \frac{1}{3} \bar{u} \gamma_{\mu} u - \frac{1}{3} d\gamma_{\mu} d + \cdots$$
$$= \frac{1}{2} \left(\bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d \right) + \frac{1}{6} \left(\bar{u} \gamma_{\mu} u + \bar{d} \gamma_{\mu} d \right) = J_{\mu}^{V} + \frac{1}{3} J_{\mu}^{S}$$
iso-vector iso-scalar

$$\begin{array}{l} \text{matrix element (ME)} \\ \text{proton} \quad \langle p | J_{\mu}^{\text{em}} | p \rangle = \langle p | J_{\mu}^{V} | p \rangle + \frac{1}{3} \langle p | J_{\mu}^{S} | p \rangle \\ \text{neutron} \quad \langle n | J_{\mu}^{\text{em}} | n \rangle = \langle n | J_{\mu}^{V} | n \rangle + \frac{1}{3} \langle n | J_{\mu}^{S} | n \rangle \\ \end{array}$$

$$\langle p | J_{\mu}^{\text{em}} | p \rangle - \langle n | J_{\mu}^{\text{em}} | n \rangle = \left\langle p | \bar{u} \gamma_{\mu} u - \bar{d} \gamma_{\mu} d | p \right\rangle = \left\langle p | \bar{u} \gamma_{\mu} d | n \right\rangle$$

$$\text{proton ME} \quad \text{neutron ME} \quad \text{iso-vector} \quad \text{Weak process}$$

Iso-vector part receives NO disconnected contribution in 2+1 flavor QCD

Connected/disconnected diagrams

 $\langle \mathcal{H}(t)\mathcal{O}(t')\mathcal{H}^{\dagger}(0) \rangle$ has **two** types of quark contraction diagrams (Wick contractions)

iso-vector quantities
 β-decay (weak matrix elements)

iso-scalar quantities
 electro-magnetic matrix elements

Connected/disconnected diagrams

$\langle \mathcal{H}(t)\mathcal{O}(t')\mathcal{H}^{\dagger}(0) \rangle$ has **two** types of quark contraction diagrams (Wick contractions)

iso-vector quantities
 β-decay (weak matrix elements)

Typically 10 to 100 times higher
iso-scalar quantities
electro-magnetic matrix elements

Numerical results

Status of PACS10 projects

Configuration	PACS10			HPCI
Resource	Oakforest- PACS → Fugaku			K-computer
Nf	2+1			2+1
mπ[MeV]	135	138	142	146
L [fm]		10 fm		8.1 fm
L ³ x T	1284(644)	1604	2564	964
a [fm]	0.085	0.063	0.041	0.085
Status	done	done	done	done
Nucleon FF	done	done	running	done
Renorm (SF, NPR)	done	partly done	planning	done

- K.I. Ishikawa et al., Phys. Rev. D98 (2018) 074510. (HPCI)
- E. Shintani et al., Phys. Rev. D99 (2019) 014510. (PACS10)
- K.I. Ishikawa et al., Phys. Rev. D104 (2021) 074514. (PACS10)
- R. Tsuji et al., Phys. Rev. D106 (2022) 094505. (PACS10)
- •R. Tsuji et al., Phys. Rev. D109 (2024) 094505. (PACS10)

mπ[MeV]	135	138	142	146
L [fm]	10 fm			8.1 fm
L ³ x T	1284(644)	1604	2564	964
a [fm]	0.085	0.063	0.041	0.085
Status	done	done	done	done
Nucleon FF	done	done	running	done
enorm (SF, NPR)	done	partly done	planning	done

Nucleon mass MN

Effective mass plot for M_N

Smearing parameters are highly tuned to maximize the ground-state dominance.

$$G(t) = \sum_{i} A_i \exp(-M_i t)$$

A sum of exponential func.

$$M_0 < M_1 < \cdots$$

$$M_{\rm eff}(t) = \ln\{G(t)/G(t+1)\}$$

$$\xrightarrow[t \to \infty]{} M_0$$

Achieving a percent level precision on the nucleon mass

Axial charge GA

Ratio for axial charge gA

*****Highly tuned smearing

R. Tsuji et al., PRD109 (2024) 094505

Ratio method → Suppression of excited-state contributions $\frac{\langle \mathcal{H}(t)\mathcal{O}(t')\mathcal{H}^{\dagger}(0)\rangle}{\langle \mathcal{H}(t)\mathcal{H}^{\dagger}(0)\rangle}$ $\rightarrow \langle N | \mathcal{O} | N \rangle$ 1.4 g_A , $t_{sep}/a=13$ GS contribution 1.3 Τ 1.1 1.4 g_A, t_{sep}/a=16 1.3 Ο Ō 1.2 g g 1.1 1.4 g_A, t_{sep}/a=19 δ 1.3 Q δ QQQQQ δ δ 1.2 1.1 $t_{\rm sep}$ $t_{\rm sep}$ 5 -10 -5 0 10 (t-t_{sep}/2)a

Effect of excited-state contamination is negligible

Good plateau for t_{sep}=19, 16, 13 and no t_{sep} dependence

A precent-level determination of g_{A}

Effect of excited state contamination is negligible for $t_{sep} \ge 1.2$ fm. Finite volume error is less than 1%.

A precent-level determination of g_{A}

Effect of excited state contamination is negligible for $t_{sep} \ge 1.2$ fm. Finite volume error is less than 1%. Discretization error is less than 1%.

Electric form factor GE

Ratio for iso-vector G_E(q²)

 $t_{\rm sep}$

 $t_{
m sep}$

Iso-vector electric form factor GE

The previous results disagree with the Kelly's curve

Iso-vector electric form factor GE

The new results obtained with the fine lattice spacing (a≈0.06 fm) approaches to the Kelly's curve

Iso-vector electric form factor GE

The new results obtained with the fine lattice spacing (a≈0.06 fm) approaches to the Kelly's curve

Lattice discretization uncertainties

Lattice discretization uncertainties on gA and rE

axial charge **g**_A

rms charge radius rE

R. Tsuji et al., PRD109 (2024) 094505

Lattice discretization uncertainties

Lattice discretization uncertainties on g_A and r_E

axial charge **g**_A

rms charge radius rE

Summary

We have studied **iso-vector** nucleon form factors calculated in 2+1 flavor QCD **at the physical point** on **(10 fm)**⁴ lattice at **two lattice spacings (a=0.085 and 0.063 fm)**

 \checkmark Large spatial volume allows investigation in the small momentum transfer region, 0.01 < q² < 0.1 [GeV²] with q²=0

 \checkmark t_{sep} dependence is systematically investigated

- → g_A and G_E, G_M show **no t_{sep} dependence**
- → excited-state contributions are negligible for $t_{sep} \ge 1.2$ fm

✓ Large discretization uncertainty is observed in G_E, but not in g_A

➡ needs the third simulation at the finer lattice spacing

3rd simulation performed on Fugaku

iso-vector

2023 16M node-hour@Fugaku 2024 10M node-hour@Fugaku

Current status for proton's charge radius from lattice QCD

Back up slides

R. Tsuji et al., PRD109 (2024) 094505

electric rms radius

axial rms radius

Mainz Group

Nf		2+1		
a [fm]	0.086	0.073	0.064	0.050
mπ[MeV]	227, 283	218, 289	130 , 207, 281, 295	176, 266
L [fm]	4.1, 2.8	4.9, 3.7	6.1 , 4.1 3.1, 2.0	4.8, 3.2

Discretization effects are statistically less precise, especially for RMS radii.

Our Group (PACS)

Nf		2+1	
a [fm]	0.085	0.063	0.04
mπ[MeV]	135	138	138
8	10.8	10.1	10

Discretization effects are observed at fixed m_{π} with a fixed physical volume.