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Muons and Muonic Systems

Second-generation charged-leptons

Electron Muon ()

Charge -e Mass 106 MeV/c?2 \ /

Life 2197 ns

\Spin 1/2 Muon (u+)/ \ Proton

Muonium Muonic atom
ru,p=o.532A rup=0.00256l&

“Who ordered that?”

o Muon is 207 times heavier than electron and decays in 2.2 us of the lifetime.
O Muonic systems provide unique opportunities to determine the fundamental
physical constants and to search for physics beyond the Standard Model.

2



Muonic Hydrogen Spectroscopy

to determine the proton radius

P32 = —_— Ef Lamb Shift : 206 meV=6 um
B Finite size effect 3.7 meV
2P/ — =1 — Charge Radius
F=0 1S-HFS : 183 meV=6.8 um
Finite size effect 1.3 meV
e —Zemach Radius
251/2 e
4 F=0 Difference from normal hydrogen

— lrradiation of high-energy beams
produced by accelerators onto
low-density targets

spectroscopy:
& 3 — Short lifetime of 2.2 ps
= — Muon transfer to heavier nuclei



REMA

Randolf Pohl, in SSP2018 workshop
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Proton Radius Puzzle

Unsolved Problem in Subatomic Physics

e

Up spectroscopy
Lamb shift

4%, 7o discrepancy

H spectroscopy =

-p scatterlng —0—
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Goal of new
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R. Pohl et al., Nature 466, 213
(2010).

A. Antognini et al., Science 339, 417
(2013).

J. C. Bernauer et al., Phys. Rev. C
90 015206 (2014).

A. V. Volotka et al., Eur. Phys. J.
D33, 23 (2005).

o The proton is fundamental building block of the universe. However, it is a composite

particle with a complex structure.

o A large discrepancy in results of the proton’s charge radius from electronic and
muonic systems has been known since 2010.

o As an alternative approach to this problem, we proposed a measurement of the
Zemach radius taking into account the magnetic moment distribution.
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Proton Radius Puzzle

More recent situation

Pohl 2010 (uH) b e @ Mainz 2010 (ep exp.)
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The results on charge radius have become more abundant, but there has
not been much increase in information about what is happening with the

Zemach radius.

Antognini et al. 2013 |
(uH HFS)

Hagelstein et al. 2023 |
(BxPT + pH HFS)

Hagelstein et al. 2023 |

(BxPT + H HFS)

Volotka et al. 2005 |

(H HFS)

Distler et al. 2011 |

(A1 ep scatt.)

Borah et al. 2020 |

(z-exp. ana. of ep scatt.)

Lin et al. 2022 |

(disp. ana. of ep scatt.)

This work 1
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Left: H. Gao and M. Vanderhaeghen, Rev. Mod. Phys. 94, 015002 (2022).
Right: D. Djukanovic et al., arXiv:2309.17232 [hep-lat].
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Proton Zemach Radius

Spatial distribution of charge and spin

o Defined by a convolution of the charge distribution with a
magnetic moment distribution.

Ry = /dST/dBT‘/,OE(T/),OM(T—T/)

A. C. Zemach, Phys. Rev. 104, 1771 (1956).

o Can be obtained by measuring the hyperfine splitting.

Eupg = EF(1 + 5QED + 5Pr0ton) (EF=182.443 meV)
5Proton — 5Rec 1.06 meV
i 6]_:)01 0084 mev R. N. Faustov and A. P. Martynenko,

J. Exp. Theor. Phys. 98, 39 (2004).

+ ogvep  0.004 meV

5Zemach -1.36 meV <«— 5Zemach — _Q(Xm,upRZ
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Three up-HFS Projects

Independent approaches at RAL, PSI, and RIKEN

FAMU

..........

E. Mocchiutti, in PREN2022 workshop

Hyper-Mu RIKEN/J-PARC
——
laser
S -
.\ >I< (=E : S
e E f :
H, gas 7
——— f:'\
A. Antognini, in PREN2022 workshop
FAMU PSI RIKEN
Method Transfer Diffusion | Asymmetry
Detection X-Rays X-Rays Electrons
Beam Pulsed Contiuous Pulsed




Muon Facilities

around the world
RAL (UK) o




FAMU Status

Cecilia Pizzolotto,

in PSAS2024 workshop

FAMU method and workflow
/ \ / Laser beam \

Target 27
H, gas & AE

-0 -

VAR,

4 )

Increased p transfer to O,

O\
e
@ﬂm :5;

\up

\ The target is a mixture of H2 and 02

= Create muonic hydrogen and wait for its thermalization;
= Shoot laser at the hyperfine splitting energy (A,~6.8um)
and change spin state of up from 1S, to 13S,,
spin is flipped: wp(T™L) > pp(t1) ;
= De-excitation and acceleration of up (¥120 meV)
= If up are accelerated, the p transfer to Oxygen increases (O2 has an energy-dependent rate);
= The hyperfine splitting energy is determined by varying the wavelength of the laser beam and search
the maximum number of oxygen X-rays

Temperature dependence of the p transfer to Oxygen
https://doi.org/10.1016/j.physleta.2021.127401
https://doi.org/10.1016/j.physleta.2020.126667

C.Pizzolotto INFN - 14/06/2024 - FAMU 4 ( INFf:l

R

FAMU Laser

Characteristics: Wavelength range 6800 +50 nm
Energy output >1ml
Linewidth <30pm e reached better values
Tunability steps ~9pm than our goal
Pulses duration 10ns
Repetition rate 25Hz

1262 nm tunable ~ 1iCombination!

I | Nd:YAG Criforsterite

Pump Oscillator

|
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|
1
|
|
|
|
|

[
1064 nm o [l

1| Nd:YAG | Nd:vAG [ ) ,

| Seeder Ampliﬁer a = i

M1 - Mirror HR 1064 nm, M2 - Mirror HR 1262 nm, M3 - Mirror HR 1064&1262&6785 nm, M4 - Mirror HR 6785 nm,
T1 and T2 - telescopes, BS1 - beamsplitter/beamsampler 1064 nm, BS2 - beamsplitter/beamsampler 1262 nm,
BS3 - beamsplitter/beamsampler 6785 nm, DC1 - dichroic mirror (reflecting 1064 nm, transmitting 1262 nm),
DC2 - dichroic mirror (reflecting 1064 nm and 1262 nm, transmitting 6785 nm), NL - nonlinear crystal,

MU - measuring units (wavelenght meter, energy meter, dimensions)

1064 nm beam

1262 nm beam

6785 nm beam

)

C.Pizzolotto INFN - 14/06/2024 - FAMU

non linear crystal
9x10x28 mm3

a@% N

e

FAMU investigated regionsin 2023

Laser wavelengths investigated in 2023:

14 frequencies investigated

in steps of 25 pm Theoretical prediction of the HFS
~ 24 h for each frequency —t i 2025
, Width FWHM ~7pm ' ¢
¢ 500 1% SEeEeE T T T TS [
: 450:— ! = I. | Antognini 2022
s F December I3 ‘
° - = l ]
400/——-1 i 3 w
E S| J 3 R Tomalak 2019
2 350(— l = H
wof | | '
E 1 PREL E [ | Pineda 2017
3 M 3
250 ] Rly -3 ‘
200F- | = 6788 6789 6790 6791
= | E Lambda HFS (nm)
1501 | = T
100 —
- 1 o)
S04 '
6786.45678.5 6766.556786.5 6783 656785.7 6768.756788 86788.85.6788. 36768.95
avelength [nm]
Q“c‘})‘ C.Pizzolotto INFN - 14/06/2024 - FAMU 13 INFN
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Summary and outlook

* Successful physics data taking in 2023 ;
- target, detectors, cavity, and laser are performing as expected;
- 14 frequencies investigated

* The analysis of the 2023 dataset is ongoing

* New physics data taking planned in July and till 2025
- Improvement: larger coverage from X-rays detectors
- Enlarge the investigated WL region by 2/3

Future:

Working on an improvement of the laser scheme in terms of
energy and stability

C.Pizzolotto INFN - 14/06/2024 - FAMU

;..6),
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Hyper-Mu Status

Ahmed Out, in PSAS2024 workshop

The principle of the experiment

The laser system

Trigger
muon atomic ) .. ( cw seed
X-ray detectors beam X-ray detectors fr,?._T,“ (,eference : ( 1532 nm
Ha 1532 nm
[N 1532 nm
B 1030 nm @ 3143
atomic L
laser 2 -~ 7 5 1030 nm K
pulse 8 - o :
j ? eed . 6800 nm
CW S Pump diodes =
1030 nm 3 kW, 940 nm e r
m
&
8
A X-ray detectors = TDL amp 1030 nm 4 /%
300mJ J | 2148 nm| OPAs
1030 nm OPO I
» Diffusion: up diffuses to Au-coated target walls o y 1979 nm
. . ) ) g Requirements 1979 nm
» Detection: formed pAu* de-excites producing X-rays x lambda- Ccw see
? A resonance O Pulse energy 5mJ 1 -l 1979 nm
» Resonance: Plot number of X-ray events vs laser é fi O Wavelength 6.8 um AL
> A I‘\ L.
frequency g lay b‘;;‘;’gm‘j ot O Linewidth < 100 MHz
feve O Stochatic trigger (detected muon)
> o o
Reiated Proposals: FAMU at RIKEN/RAL, muonic H at J-PARC laser frequency U Response time 1 us
O Tunability 40 GHz
JG|u Ahmed Ouf PSAS'2024 Zurich 14.06.2024 JG|u Ahmed Ouf PSAS'2024 Zurich  14.06.2024
- -
Enhancement cavity Simulated resonance
Assuming the resonance has been found and given: x10°°
M. Marszalek , PhD Thesis, ETH 2022 e g the res il given: r e o
M. Marszalek et.al , arXiv:2402.07223 » Laser pulse 1TmJ 18 4 | Pseudo-data
c . At .
=] Voigt fit
» Target length 1.2 mm g1.85 A
> Cavity R =99.2% 2 A t
3181 ) X
» Detection system: €5, = 70%, €py—false = 9% S L 4 Py
1.75 F

laser
pulse

eb Ty

S

G

8] Ahmed Ouf PSAS'2024 Zurich  14.06.2024
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& -200 0 200
v - v [MHz]

Determine resonance position with

6 =4 MHz (1.6 x 1078 eV)

4 MHz o
o m—v)

EHFS =44THZ \w/

~4»+ Theory improvement needed

JG|U Ahmed Ouf PSAS'2024 Zurich  14.06.2024




Laser Spectroscopy of up-HFS

Method of our experiment at J-PARC

o Laser induced hyperfine transition
and muon spin flip

>

Laser shot

l

o Parity violating muon decay
Forward

Electron counts

o Decay electron angular asymmetry Backeard

>
Time from muon pulse arrival

o Laser frequency scan

s
Vo4 N
w ; od ©
:
?
i S
s
* Q@
/.3 1 Laser freq - HFS freq
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J-PARC

Japan Proton Accelerator Research Complex

{ k- :' ) \ °¥\\

N AN P\
" gl VSR Spectrometer

o World most intense pulsed proton driver.
o RCS provides 3 GeV protons for muon production at MLF.

o MR delivers higher energy protons for the COMET, hadron, and
neutrino experiments.

13



Project Timeline

Since the experimental proposal

2013 2014 2015 2016 2017 2018 2019

>

Target R&D RAL Test1| |RAL Test2| |RAL Test3

The Proposal
Puzzle Submitted

Detector R&D J-PARC Test

Target Cell Cryostat Detector Pump Laser Seed Laser
M. Sato, K. Ishida S. Okada, Y. Ma S. Aikawa, M. Yumoto, N. Saito, Y. Oishi
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Experimental Setup

Cryogenic hydrogen target

4 P beam
/

High pulse energy mid-IR laser



V3

Optical parametric amplifiers

V 4

6.8 um, 10 mJ

Quantum cascade laser

Tm,Ho:YAG ceramic laser

Optical parametric oscillator

6.8 um, 25 mW
seed beam

5
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' Eg;

2.09 pm, 20 mJ
pump beam



Tm,Ho: YAG Ceramic Laser

for a pump beam

180F

N
8]

700

~ ) B i
> - = I o
é 1601 : , E - ® 600 i._
- : 20—
o 140 Q - ; —1500
2 120f S . g‘
[e) E C: 15 o . D-
= 100} o 400 =
- L - ~
R7 10k e —300 E
= B —
A~ - 200
B L | 5 —100
1 1 1 I 1 1 1 | 1 : \ B | - ] | - [ b [ 1 Ll | Ll 1 1 | ) ! Ll [ L1 1.1
—%00 0 200 400 600 800 1000 %0 55 60 65 70 75 80 85 98

Time (ns) LD current (A)
o 2.09 um light is necessary for 6.8 um light generation via an OPO.

o LD pumped, Q-switching, Tm3+,Ho3+ co-doped YAG ceramic laser was
developed.

o Sufficient performance as a pumping beam for the ZGP-OPO was achieved
(E>20 mJ, Width<150 ns).

S. Kanda et al., RIKEN Accelerator Progress Report 51, 214 (2018).
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Quantum Cascade Laser

for a seed beam

6.795

g

5 6.790—

oY)

-

2

O

% 6.785 |

= :
6780_—»' . _— .20 OC
M ® 25 °C

e 30 °C

6‘775% | l | | l 11 | I 11 1 l | I I | l | — l ||
0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84

Laser diode current (A)

o Quantum cascade laser (QCL) for a seeder was developed.
o QOscillationat 1473.03 cm-1 = 6.778 um was confirmed.
o Radiant output power was 25 mW at 6.778 um (high enough).
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Optical Parametric Oscillator

for frequency conversion

Mirror ZnGeP; crystal Mirror

2.09 um pump
~ cale.

L_1 1 v A
A —_— = — — ....5...'.5'.....5....E....é....é....é....
P >‘p )\1 >\2 A2 R R R SV

Output light wavelength (um)

v Phase matching angle (deg.)

o Optical parametric oscillator provides two lower frequency lights from a
pumping light via non-linear optical effect.

o ZGP is an optimum from viewpoints of the damage threshold and non-linear
optical coefficient.

o The Lamb shift can also be measured by adjusting the phase-matching angle.
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Optical Parametric Oscillator

for frequency conversion
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0 1 2 3 4 5 6 0 50 100 150 200

Pump energy (mJ) Pulse width (ns)
o The ZGP-OPO was demonstrated with Cr:ZnSe laser (2.4 um).

o Similar performance is expected with 2.09 um pump.

o The conversion efficiency of 13% or above is achievable.
S. Aikawa, Master Thesis, Tokyo Institute of Technology (2016).
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Cryogenic hydrogen gas target

Non-resonant multipass-cell

ol




Hydrogen Gas Target

at cryogenic temperatures

o Target is cooled down to 20 K by using a pulse-tube cryostat.
o (as density is monitored by a Baratron pressure gauge.

o Target cell is made of tungsten for background suppression.
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Electron Detector

for a muon spin measurement

2 107F
g —2; _— TOtal
2 10°E —— Deuterium
Bl — Aluminium
E - — Silver
Q -4
U 10 ............................

107°

10°° - :

|- 1\ |

0 5000 10000 15000 20000 25000 30000
Time (ns)

o A segmented scintillation counter consisting of scintillator bars and silicon
photomultipliers (SiPMs). A fast frond-end electronics for SiPM readout is used.

o Coincidence analysis for signal-to-noise ratio improvement.
o Tested at RIKEN-RAL muon facility and sufficient performance was confirmed.

S. Kanda et al., RIKEN Accelerator Progress Report 52, 180 (2019).
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Multipass-Cell

for laser-light reflections

100
S .
S F
g -
S 80
) -
é" i
m =
= 60
g =
, ‘ P H LU Xi ZnSe sub., 25.4 mm-dia, ' =
j 5-mm thick, 1 m CC/plano : 20—
x AR at 6778 nm, R<0.3% { i
PRECISION COMPONENTS [ o' 0 L™ 0
To be opened and handled CERURG: 2 = AV PR . -
only by qualified personnel ZP“ I E
Mar. 15,2019 P41-9-049 " | O IR B |
- 5

Wavelength (um)
o The reflective index of 99.95% is desirable.

o A pair of prototype mirrors were fabricated and tested.
o A precise measurement of the reflective index is planned.
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Cascade De-excitation

of muonic atoms in a low-density gas

Mechanism Process (Hydrogen case) o When a nuclear C.oulomb potential
captures a negative muon, the
Radiative transition (up)i = (up)f + 7 muon forms an exotic bound state
External Auger effect | (up)i + Hz— (up)s +e + Hat called muonic atom.
Stark mixing (p)ni + H—>(up)n’ + H o Initial state is highly excited with
_ _ the principle quantum number
Elastic scattering (up)n + H=>(up)n + H n~14 (meu/me)_
Coulomb de-excitation | (up)i+p—>(up)r+p o Muon spin depolarization due to

Auger electrons.

o Acceleration by Coulomb de-

V. A. Markushin, excitations.

Phys. Rev. A 50, 1137

(1994) o Coulomb explosion of a molecule.

o Electron refilling from surrounding
atoms.

o Too fast to track one-by-one.
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Atomic Collisional Quenching

De-excitation of the hyperfine triplet

o Collisional quenching of the HFS triplet state
o Inelastic scattering up(F=1)+p -> up(F=0)+p

o Only theoretical predictions are known and no measurement had been performed.

1000
900f;
800
700
600
500
400
300
200
100

o Quenching rate depends on collision
energy and gas pressure.

| o Expected lifetime at 20 K, 0.06 atm is
Values from:J:'S:‘Cohen, ]
Phys. Rev. A 43,3460 (1991).-|  approximately 50 ns.

lllllillll]]lll‘lll‘.Elllltll.\

o A new experiment for direct
| measurement of the quenching rate

‘11;3_2 o 1 16 TS
Collision energy (eV) was proposed.

Cross section (1020 cm?)

p ol 1 L1 111

- O
O [ETTTITITIT
&
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Collisional Quenching Measurement

at RIKEN-RAL Muon Facility

(@) ] (b)

Experimental setup CHRONUS spectrometer
o Initial muon spin is polarized along the beam axis.
o Muon forms a muonic atom after stopping in the target.
o Muon spin rotates under a static magnetic field.

o Angular asymmetry in electron emission from muon decay is measured.
S. Kanda et al., J. of Phys. Conf. Ser., 1138 (2018).
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Negative Muon Spin Rotation

of muonic carbon and muonic deuterium

o
-

o
—

Electron asymmetry
o
o
an
!

Electron asymmetry
o
o
o 52
| T |

—
—_—

o

-0.05( T ' [ Il _0.05|- J l‘
" Graphite plate, B=230 G h "Dzgas 1 atm, B=120G l
O ""fo00 2000 3000 4000 0300 4000 6000
Time (ns)

o Muon spin rotation in graphite was measured to calibrate the beam
polarization and detector acceptance. The uSR amplitude was 0.045%+
0.002, the beam polarization was estimated to be 95%.

1l 1 1 1 1 1
8000 10000
Time (ns)

o Using a deuterium gas target, an oscillation amplitude of 0.017+0.003
was obtained, then the residual polarization was 8.3%. Relaxation was

too slow to evaluate. Publication in preparation

28



Muonic Protium Spin Rotation

at RIKEN-RAL Muon Facility

M 510‘6 h3
(a) (b) i “ Entries 65793
B g Mean 5008
25— Std Dev 1366
B = u H> gas 0.1 atm Integral 0.001345
) H . 2 / ndf 92.27 /80
Vf % e ’IH B=766 G Prob 0.1644
B ‘ Amp 0.2546 + 0.0862
] L, N ‘ Period 380.7+5.5
: m_ﬁ_ﬂ O M Phase 320 +54.0
! 15— Floor 1.602¢-06 + 8.399e—08
L | B pd 887 + 0.0
L H2yield  1.804e-05 + 2.825e-07
10— Quench 1004 + 297.6
- i p7 0+0.0
B R, L Vi w ” To 3780 + 0.0
B R i ‘_|, 4| Ag yield 0.00414 +0.00173
b T | P10 6.566e+04 + 1.167e+05
20 cm R T e 0+0.0
| [ ——— 4000 4500 5000 5500 6000 6500  700| Mup life 2195+ 0.0
Time (ns)

o Muon spin rotation with a low-density hydrogen gas target was
performed using a new target chamber for better B-field uniformity.

o The low gas pressure of 0.1 atm was necessary, so the signal-to-
noise ratio is small. Nevertheless, a precession-like signal is visible,
so careful analysis and detailed simulations are underway.
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Feasibility of the Experiment

expectation on the statistical precision

1

iy
N
T

— Total
— H2 Target
— Background

o
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- Laser
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Electron asymmetry
T

Electron count/20 ns/muon
Muon spin polarization (%)

10—5 E \ 0} ®
- _ i) s o I 1 I ! _ : A i i b
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Elapsed time from pulse arrival (ns) Elapsed time from laser injection (ns) Laser freq_ - HFS freq. (MHZ)

o The beam flux is 1x106 w/s with the momentum of 40 MeV/c. About 0.05% of muons stop
between the multipass-cell mirrors.

o The laser light is injected 1 us after the muon pulse arrival. The averaged muon spin polarization
will be 2% with the pulse energy of 20 mJ.

o The signal counting rate will be 0.14/s. A week of measurement is required for frequency scan.

o Completion of the high pulse-energy laser system is necessary. Improvement in the OPO and
OPA is essential. Technically possible, mainly a matter of budget.

S. Kanda et al., Proceeding of Science, POS(NUFACT2017)122 (2018).
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Solid Hydrogen Target

for spectroscopy in vacuum

- 0~1 us
- -2~3 s
-4~5us

Relative yield
2

—

o

N
TTTT T T

500

| Ll Ll i [ ] 0 bl l ‘ P IR R, 4 —
10t 1073 102 10- 0 10 20 30 0 50
up Kinetic energy (eV) Distance from the target (mm)

Model: J. Wozniak et al., Phys. Rev. A 68, 062502 (2003).
o Muonic hydrogen atoms are emitted from solid hydrogen in to a vacuum.
o Spectroscopy become possible without collisional quenching,.

o Under development as a common system with a solid rare-gas moderator for
a muonium interferometer.

o A beam test is scheduled for early next year.
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Atomic Parity Violation

a spin-off project from wp-HFS spectroscopy

Initial states Electron tracker E Target gas cell

n~14 = _:_ | |
\ \ /,,,/f{" e\ AV
2S .
T e v 2P R '/“4-!

O

Mixing
Mi| 7 2Eq E
1S VYV Pulsed muon beam  LYSO calorimeter/

o A new measurement of the Weinberg angle using muonic atoms.

o Parity-violating mixing between 2S-2P states results in anisotropic
single-photon emission (M1).

o Muonic X-rays are measured by a scintillator-based calorimeter.
S. Kanda, EPJ Web Conf. 262, 01010 (2022).
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Reboot the project at J-PARC

towards realizing

te first spectroscopy

MPPC BOARD V!
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Summary

and outlooks

o For a deeper understanding of the proton
radius, a new measurement of the ground-
state hyperfine splitting in muonic hydrogen
IS In preparation.

oIn the experiment, the angular asymmetry of
muon decay electrons is to be measured for
detection of the state transition.

o We are working to complete the apparatus
developments and realize the experiment.
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