

AB INITIO NUCLEAR DENSITIES FROM LOW-RESOLUTION INTERACTIONS

Pierre Arthuis

Funded by the European Union

31/10/2024

From the LEES workshop to sake lees

Sendai workshop on "Low-Energy Electron Scattering for Nucleon and Exotic Nuclei"

[DryPot - Own work, CC BY-SA 3.0, Wikimedia]

Or how sometimes it is good to leave time for things to precipitate

Ab initio many-body scheme

Particle physics

No direct application of quantum chromodynamics (Lattice QCD only for few nucleons)

Nuclear theory

Particle physics

No direct application of quantum chromodynamics (Lattice QCD only for few nucleons)

Nuclear theory

Interactions anchored in Effective Field Theory

A-body Schrödinger equation $H | \Psi^{A} \rangle = E^{A} | \Psi^{A} \rangle$

Obtain a description that is:

- Consistent
- Systematic
- Accurate enough
- From inter-nucleon interactions
- Rooted in quantum chromodynamics

See V. Lapoux' talk

See V. Lapoux' talk

Rationale

- Nucleons and pions as degrees of freedom
- Link to QCD through Hamiltonian symmetries
- Natural hierarchy of terms
- Systematically improvable

$$M_{\text{low}} \sim m_{\pi}$$
 $M_{\text{high}} \sim \Lambda_{\chi}$ $\Lambda = \{\Lambda_{\text{NN}}, \Lambda_{3\text{N}}, \dots\}$

[Epelbaum, PoS CD15 (2016)]

See G. King's, Y. Maeda's talks

Rationale

- Nucleons and pions as degrees of freedom
- Link to QCD through Hamiltonian symmetries
- Natural hierarchy of terms
- Systematically improvable

$$M_{\text{low}} \sim m_{\pi}$$
 $M_{\text{high}} \sim \Lambda_{\chi}$ $\Lambda = \{\Lambda_{\text{NN}}, \Lambda_{3\text{N}}, \dots\}$

In practice

- NN terms up to N⁴LO (though mostly N³/N²)
- 3N terms up to N³LO (though mostly N²LO)

[Epelbaum, PoS CD15 (2016)]

See G. King's, Y. Maeda's talks

Rationale

- Nucleons and pions as degrees of freedom
- Link to QCD through Hamiltonian symmetries
- Natural hierarchy of terms
- Systematically improvable

$$M_{\text{low}} \sim m_{\pi}$$
 $M_{\text{high}} \sim \Lambda_{\chi}$ $\Lambda = \{\Lambda_{\text{NN}}, \Lambda_{3\text{N}}, \dots\}$

In practice

- NN terms up to N⁴LO (though mostly N³/N²)
- 3N terms up to N³LO (though mostly N²LO)

[Epelbaum, *PoS* CD15 (2016)]

Footnote: Similar expansion with Δ excitation

See G. King's, Y. Maeda's talks

The leading three-body force

N2LO contributions

- Two-pion exchange: LECs set in the NN sector
- Two new LECs: one-pion exchange and contact term
- c_D, c_E only new parameters in 3N sector

[Hebeler et al., Annu. Rev. Nucl. Part. Sci. 65 (2015)]

- Most often fitted in the 3N sector
- Bring repulsion necessary for a good qualitative description

The leading three-body force

N2LO contributions

- Two-pion exchange: LECs set in the NN sector
- Two new LECs: one-pion exchange and contact term
- c_D, c_E only new parameters in 3N sector

[Hebeler et al., Annu. Rev. Nucl. Part. Sci. 65 (2015)]

Practical aspects

- Most often fitted in the 3N sector
- Bring repulsion necessary for a good qualitative description

A good reproduction of all nuclear properties is hard

Some early ab initio densities with NNLOsat

Charge densities of ⁴⁰Ca and ⁴⁸Ca

• First established NNLOsat as accurate interaction for ρ

- Connection to weak charge radius, $R_{
m skin}$ and $lpha_D$

[Hagen et al., Nat. Phys. 12 (2015)]

Study of candidate bubble nucleus ³⁴Si

- Investigation of the central depletion in ³⁴Si
- Link to details of the interaction and s.p. structure

2017: First SCRIT results

[Tsukada, Enokizono, Ohnishi, et al., PRL **118** (2017)]

Scattering off ¹³²Xe

- Strong motivation to try and push our reach towards higher masses
- Radius and two-point Fermi extracted from the experiment

¹³²Xe charge density distribution with NNLOsat

- Radius compatible with experiment: 4.824 ± 0.124 fm [Tsukada *et al.*, *PRL* **118** (2017)]: 4.79^{+0.12}_{-0.10} fm
- NN+3N(InI) severely underpredicts: 4.070 ± 0.045 fm
- 2-point Fermi distribution insufficient to describe expected behaviour

Uncertainty band

- Mainly model-space convergence uncertainty (truncated 3NF)
- Many-body method basically converged
- Not included: Chiral EFT uncertainty

Electron scattering on ¹³²Xe at SCRIT

[Arthuis, Barbieri, Vorabbi, Finelli, PRL 125 (2020)]

First ab initio calculation past the Sn isotopic line

- Reproduce experimental electron scattering results
- Results meaningful for exp. despite moderate convergence

Progress in numerical methods

Need for good reproduction of radii and densities

- · NNLOsat very successful with radii
- But underbinds and too hard for heavy nuclei
- · Other interactions that scale well underbind radii

Sufficient to describe bulk properties of nuclei

- Better convergence properties through softened interaction
- Proved successful for binding energies with the 1.8/2.0 (EM) [Hebeler *et al.*, *PRC* **83** (2011)]

The 1.8/2.0 approach

- NN force SRG-evolved to 1.8 fm⁻¹
- 3N force with c_D , c_E refitted with a cutoff of 2.0 fm⁻¹

[Simonis et al., PRC 96 (2017)]

Ground-state accuracy towards heavy systems

[Arthuis, Hebeler, Schwenk, arxiv:2401.06675]

Ground-state accuracy towards heavy systems

[Arthuis, Hebeler, Schwenk, arxiv:2401.06675]

Binding energy

- Reasonable reproduction of experimental values
- Slight improvement for heavy systems w.r.t. 1.8/2.0 (EM)

Charge radius

- Quasi-exact reproduction over complete mass range
- Excellent combined reproduction of charge and mass

Neutron skins and heavy systems

[Arthuis, Hebeler, Schwenk, arxiv:2401.06675]

 \mathbf{G}

Neutron removal off Sn isotopes @ R3B/GSI

• Access L through the cross-section, need for theory input

Ab initio densities for heavy systems: 120Sn

[Arthuis, Hebeler, Schwenk, arxiv:2401.06675]

Excellent reproduction of ¹²⁰Sn densities

- Consistent picture over the different interactions
- Very moderate uncertainties

Ab initio methods now mature

- Reach up to the Pb isotopic chain
- Systematically improvable many-body method and interaction
- Diversity of nuclear properties reproduced

Ab initio radii and densities

Novel interactions with good convergence properties
Consistent results over the whole nuclear chart
Meaningful input for experimental collaborations (SCRIT, R3B, ...)

Future plans

Investigation of Ar isotopes: experiment-theory back-and-forth
Densities as meaningful checks for interaction developments
Looking forward to new experimental results

See V. Lapoux' talk

Acknowledgments

the European Union

Thank your for your attention!

