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Studying nuclear and neutron-star physics

The aim of this study:

To understand the properties of nuclear matter and neutron stars in the same framework.
Taking into account the results from nuclear experiments and astrophysical observations
of neutron stars.

“Unified” nuclear equation of state (EoS)

Isospin-asymmetric nuclear EoS: E(ρB , α) = E0(ρB) + Esym(ρB)α
2 +O(α4),

with the baryon density, ρB = ρp + ρn , and the isospin asymmetry, α = (ρn − ρp)/ρB .
The bulk properties of nuclear matter are given by the coefficients based on the expansion
of E(ρB , α) around the saturation density ρ0,

E0(ρB) = E0(ρ0) +
K0

2!
χ2 +O(χ3), Esym(ρB) = Esym(ρ0) + Lχ+

Ksym

2!
χ2 +O(χ3),

isospin-symmetric matter properties isospin-asymmetric matter properties
where χ = (ρB − ρ0)/3ρ0.
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Constraints on the nuclear EoS
from nuclear experiments and astrophysical observations

1 Low-density region (ρB ≤ ρ0)

Characteristics of finite nuclei: binding energies, B/A, and charge radius, Rch

The accurate measurement of neutron skin thickness from the parity-violating
electron scattering: PREX-2 (208Pb) and CREX (48Ca)

PREX collaboration, Phys. Rev. Lett. 126 (2021) 172502 and CREX collaboration, Phys. Rev. Lett. 129 (2022) 042501.

2 Intermediate-density region (ρB ≃ (1.5− 2.5)ρ0)

— Astrophysical data of a canonical 1.4 M⊙ neutron star —
Neutron-star radius, R1.4 : PSR J0030+0451 (NICER)
1.44+0.15

−0.14 M⊙ and 13.02+1.24
−1.06 km, and 1.34+0.15

−0.16 M⊙ and 12.71+1.14
−1.19 km

M. C. Miller, et al., Astrophys. J. Lett. 887 (2019) L24, T. E. Riley, et al., Astrophys. J. Lett. 887 (2019) L21.
Dimensionless tidal deformability, Λ1.4 : GW170817 (gravitational-wave signals)
Λ1.4 = 190+390

−120 LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 119 (2018) 161101.

3 High-density region
Particle flow data in heavy-ion collisions (HICs)
Maximum mass of a neutron star: Mmax

NS > 2M⊙

To clarify the properties of isospin-asymmetric nuclear matter
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Discrepancy between between Rskin and Λ1.4
Characteristics of isospin-asymmetric nuclear matter

Isospin-asymmetric matter properties

Esym(ρB) = Esym(ρ0) + Lχ+
Ksym

2!
χ2 +O(χ3)

Density-dependence of Esym(ρB) ⇒ focusing on L

▶ Astrophysical constraint: small L
Dimensionless tidal deformability (GW170817)

Λ1.4 = 190+390
−120 B. P. Abbott, et al., Phys. Rev. Lett. 121, 161101.

▶ Terrestrial experiment: large L

Parity-violating electron scattering, PREX-2 (208Pb)
R208
skin = 0.283± 0.071 fm PREX Collaboration, Phys. Rev. Lett. 126, 172502.

To solve this discrepancy, we construct new effective
interactions: “OMEG family”
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Neutron skin puzzle ?

Due to less information on parity-violating electron scattering, further research is needed:
▶ Dispersive corrections in elastic electron-nucleus scattering P. Gueye et al., Eur. Phys. J. A 56, 126.
▶ γZ -exchange contributions to the parity-violating asymmetry, Apv

Qian-Qian Guo and Hai-Qing Zhou, Phys. Rev. C 108 (2023) 035501.

Two aspects of neutron skin puzzle

1 Difficulty of reconciling the PREX-2 and CREX results simultaneously:
While 208Pb is estimated to have a relatively thick neutron skin of around 0.28 fm (PREX-2),
48Ca is estimated to have a significantly smaller skin of around 0.12 fm (CREX).

At present, there is no “theoretical” calculation...
2 Discrepancy between the PREX-2 experiment and the neutron-star observations:

Large R208
skin (large L) versus small RNS and Λ1.4 (small L)

We have to directly focus on the density profiles of ρch (ρp ) and ρW (ρn), not Rskin = Rn − Rp .
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Parity-violating electron scattering
Lead Radius Experiment (PREX) PREX Collaboration, Phys. Rev. Lett. 126 (2021) 172502.

The parity-violating asymmetry Apv in longitudinally polarized elastic electron scattering
off 208Pb nuclei:

Apv (Q
2) =

dσR/dΩ− dσL/dΩ

dσR/dΩ+ dσL/dΩ
≃

GFQ
2|QW |

4
√
2παZ

FW (Q2)

Fch(Q2)
, FW (Q2) =

1

Qw

∫
dr ρW (r)e iQ·r ,

where dσL(R)/dΩ is the differential cross section for the scattering of left (right) handed
electrons from 208Pb, GF is the Fermi coupling constant, FW (ch) is the neutral weak (charge)
form factor, and QW is the weak charge of 208Pb.

Electromagnetic (EM) charge

1 EM charge densities in nuclei have been
very well measured for years.

De Vries, et al., Atom. Data Nucl. Data Tabl. 36 (1987) 495–536.

2 EM charge is coupled to photon:
a positive electric charge of +1e

3 Very good probe of the proton density.

Weak (W) charge

1 The Z0 boson couples to the weak charge,
QW .

2 Neutrons strongly linked to weak charge of
nucleus because of the small Qp

W and large
Qn

W :
Qn

W ≃ −1 and Qp
W = 1− 4 sin2 ΘW ≃ 0.08.

T. Miyatsu et al. — Nuclear equation of state from terrestrial experiments and astrophysical observations — 7/18



Outline Introduction Theoretical framework Numerical Results Summary

Theoretical analyses of (weak) charge density

Charge density with a dipole-type (Sachs) form factor: elastic electron scattering

ρch(r) =

∫
dr ′ ρsn

(
r − r

′) ρp(r ′), ρsn
(
r − r

′) =
µ3

8π
exp

(
−µ

∣∣r − r
′∣∣) ,

where the cut off parameter is given by µ = 0.71 GeV.

Weak charge density (a spin-zero nucleus): Parity-violating electron scattering
Z. Lin, and C. J. Horowitz, Phys. Rev. C. 92 (2015) 014313.

ρW (r) = 4

∫
dr ′

[
G z
p

(∣∣r − r
′∣∣) ρp (r ′)+ G z

n

(∣∣r − r
′∣∣) ρn (r ′)] ,

where G z
p and G z

n are the Fourier transformations of weak from factors for the coupling of a
Z0 to proton or neutron:

G z
p =

1

4

(
GE
p − GE

n

)
− sin2 ΘWGE

p −
1

4
GE
s , G z

n =
1

4

(
GE
n − GE

p

)
− sin2 ΘWGE

n −
1

4
GE
s .

If the contribution of strange quarks is ignored, then

ρW (r) ≃ Qp
W ρch (r) + Qn

W

∫
dr ′

[
GE
p

(∣∣r − r
′∣∣) ρn + GE

n

(∣∣r − r
′∣∣) ρp] .
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PREX-2 experiment
Large neutron skin thickness, Rskin = Rn − Rp = 0.283 fm PREX Collaboration, Phys. Rev. Lett. 126 (2021) 172502.

Weak radius:
R2
W =

1

QW

∫
dr r2ρW (r) , QW =

∫
dr ρW (r) = ZQp

W + NQn
W .
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The ρ0b is approximately calculated using a
symmetrized two-parameter Fermi function:

ρW (r , c, a) = ρ0b
sinh (c/a)

cosh (r/a) + cosh (c/a)
.
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— Theoretical framework —

Relativistic mean-field (RMF) models with isoscalar- and
isovector-meson mixing
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RMF models with isoscalar- and isovector-meson mixing
T. Miyatsu, M.-K. Cheoun and, K. Saito, Astrophys. J. 929, 82 (2022).

The interacting Lagrangian density including the isoscalar (σ and ωµ) and isovector (δ⃗ and
ρ⃗µ) mesons as well as nucleons (N = p, n) is given by

Lint =
∑
N

ψ̄N

[
gσσ − gωγµω

µ + gδ δ⃗ · τ⃗N − gργµ ρ⃗µ · τ⃗N
]
ψN − UNL(σ, ω, δ⃗, ρ⃗ ).

The nonlinear potential is here supplemented as

UNL(σ, ω, δ⃗, ρ⃗ ) =
1

3
g2σ

3 +
1

4
g3σ

4 −
1

4
c3 (ωµω

µ)2 −
1

4
e3 (ρ⃗µ · ρ⃗µ)2 − Λσδσ

2δ⃗ 2 − Λωρ (ωµω
µ) (ρ⃗ν · ρ⃗ ν) .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
isospin-symmetric properties isospin-asymmetric properties

E0(ρ0), K0, J0, · · · Esym(ρ0), L, Ksym, Jsym, · · ·

Lorentz-
scalar

vector

isoscalar

σ (∼500 MeV)

ωµ (780 MeV)

isovector

ρ⃗µ (775 MeV)

mixing

ω-ρ mixing

δ⃗ (990 MeV) σ-δ mixing
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— Numerical results —

1 Neutron skin thickness of 48Ca and 208Pb
2 Neutron star properties

▶ Mass-radius relation of a neutron star
▶ Neutron-star tidal deformability, Λ

3 Discussion: nuclear symmetry energy
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Neutron skin thickness of 208Pb and 48Ca
Using the effective interactions based on RMF models

Models (L) g2
δ g2

ρ Λσδ Λωρ

NL3 (118) — 19.9 — —
FSUGold2 (113) — 20.1 — 12.3
FSUGarnet (51) — 48.0 — 1555.7

OMEG0 (50) 37.7 51.7 87.0 102.6
OMEG1 (70) 30.0 44.6 95.0 75.7
OMEG2 (45) 20.0 44.4 85.0 288.9
OMEG3 (20) 15.0 57.6 70.0 909.8

DINOc (90) 335.8 230.7 — 171.6

The OMEG family is constructed so as to
reproduce the characteristics of finite nuclei and
nuclear matter as well as neutron stars.

0.10

0.15

0.20

0.25

0.15 0.20 0.25 0.30
208

4
8

PREX-2

C
R

E
X

R
C

N
P

Crystal Ball at MAMI
and A2 Collaboration

OMEG0
OMEG1

OMEG2

OMEG3

DINOa
DINOb

DINOc

FSU-δ6.2
FSU-δ6.7

TM1

NL3

FSUGold2

HPNL0

HPNL5

FSUGold2+R

IU-FSU

PD15

BigApple

FSUGarnet+R

FSUGarnet

TAMUC-FSUa

FSUGold
IOPB-I

R
sk

in
(f

m
)

Rskin (fm)

T. Miyatsu et al. — Nuclear equation of state from terrestrial experiments and astrophysical observations — 13/18



Outline Introduction Theoretical framework Numerical Results Summary

Neutron skin thickness of 208Pb and 48Ca
The effect of Ksym due to the δ-N coupling
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The Ksym becomes large as gδN increases.
Ksym = 25 MeV (g2
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δN = 300)

The experimental data of ρch is not supported.
Neutron skin puzzle (1)
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Neutron skin thickness of 208Pb and 48Ca
The effect of Ksym due to the δ-N coupling
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The effect of Ksym due to the δ-N coupling
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Neutron skin thickness of 208Pb and 48Ca
The effect of Ksym due to the δ-N coupling
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The Ksym becomes large as gδN increases.
Ksym = 25 MeV (g2

δN = 0) → Ksym = 877 MeV (g2
δN = 300)

The experimental data of ρch is not supported.
Neutron skin puzzle (1)
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Properties of neutron stars
Solving the Tolman–Oppenheimer–Volkoff (TOV) equation

dP(R)

dR
= −

G [P(R) + ϵ(R)][M(R) + 4πR3P(R)]

R[R − 2GM(R)]
,

M(R) =

∫ R

0
4πr2ϵ(r)dr ,

 ϵ: energy density
P : pressure
G : gravitational constant
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Neutron-star EoS
The charge neutrality and β equilibrium

conditions are imposed with leptons (e− and µ−).
µ = µn − µp = µe = µµ,

q = Yp − YL = ρp/ρB −
∑

ℓ=e,µ ρℓ/ρB = 0.
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Neutron-star properties
RMF models with isoscalar- and isovector-meson mixing
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✓ The σ-δ mixing affects P in pure neutron matter and Esym(ρB) around 2ρ0.
✓ The neutron-star radius becomes small. ⇒ The R1.4 and Λ1.4 satisfy the observations.⇒ The R1.4 and Λ1.4 satisfy the observations.
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Nuclear symmetry energy
Approximation due to the Lorentz decomposition of Esym
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Summary
This work was supported by the NRF of Korea (Grant Nos. RS-2023-00242196, NRF-2021R1A6A1A03043957 and NRF-2020R1A2C3006177).

To understand nuclear and neutron-star physics in the same framework:

Taking into account the terrestrial experiments and astrophysical observations of neutron
stars, we have constructed new EoSs for neutron stars using the RMF model with nonlinear
couplings between the isoscalar and isovector mesons.

We have introduced the δ-N coupling and σ-δ mixing in the conventional RMF models.

Neutron skin puzzle:

1 We have introduced the δ-N coupling to solve the neutron skin puzzle (1). However it is still
difficult to explain. We perhaps may study the density profiles of ρch (ρp ) and ρW (ρn) in detail.

2 It is found that the σ-δ mixing is very powerful to understand the terrestrial experiments
and astrophysical observations of neutron stars self-consistently—puzzle(2).

Large R208
skin (PREX-2) and small RNS (NICER) Λ1.4 (GW170817)

Thank You for Your Attention.
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