Nuclear equation of state from terrestrial experiments and astrophysical observations

Tsuyoshi Miyatsu

Department of Physics and OMEG Institute, Soongsil University, Republic of Korea

in collaboration with **Myung-Ki Cheoun** (Soongsil University), **Kyungsik Kim** (Korea Aerospace University), and **Koichi Saito** (Tokyo Universiaty of Science)

The Low-Energy Electron Scattering for Nucleon and Exotic Nuclei (LEES2024) @ Tohoku University, Sendai, Japan October 31, 2024MFG

Table of contents $\sqrt{2}$ 1 Introduction Nuclear and neutron-star physics: nuclear equation of state (EoS) Parity-violating electron scattering 2 Theoretical framework Relativistic mean-field (RMF) models: recent improvements **3** Numerical results Neutron skin thickness of ⁴⁸Ca and ²⁰⁸Pb Neutron star properties Discussion: nuclear symmetry energy 4 Summary T. Miyatsu et al. — Nuclear equation of state from terrestrial experiments and astrophysical observations — 2/18

Outline Introduction Theoretical framework Numerical Results Summary

Studying nuclear and neutron-star physics

The aim of this study:

Outline Introduction Theoretical framework Numerical Results Summary

- To understand the properties of nuclear matter and neutron stars in the same framework.
- Taking into account the results from nuclear experiments and astrophysical observations of neutron stars.

\mathbb{E} "Unified" nuclear equation of state (EoS)

- Isospin-asymmetric nuclear EoS: $E(\rho_B, \alpha) = E_0(\rho_B) + E_{\text{sym}}(\rho_B) \alpha^2 + \mathcal{O}(\alpha^4)$, with the baryon density, $\rho_B = \rho_p + \rho_n$, and the isospin asymmetry, $\alpha = (\rho_n - \rho_p)/\rho_B$.
- The bulk properties of nuclear matter are given by the coefficients based on the expansion of $E(\rho_B, \alpha)$ around the saturation density ρ_0 ,

$$
E_0(\rho_B) = E_0(\rho_0) + \frac{K_0}{2!} \chi^2 + \mathcal{O}(\chi^3),
$$
ospin-symmetric matter property

),
$$
E_{sym}(\rho_B) = E_{sym}(\rho_0) + L\chi + \frac{K_{sym}}{2!}\chi^2 + \mathcal{O}(\chi^3)
$$
,

 $\text{where } \chi = (\rho_B - \rho_0)/3\rho_0.$

 \Box

Introduction

Constraints on the nuclear EoS from nuclear experiments and astrophysical observations

1 Low-density region ($\rho_B \le \rho_0$)

- Characteristics of finite nuclei: binding energies, *B/A*, and charge radius, *R*ch
- **•** The accurate measurement of neutron skin thickness from the parity-violating electron scattering: PREX-2 (²⁰⁸Pb) and CREX (⁴⁸Ca)

PREX collaboration, Phys. Rev. Lett. 126 (2021) 172502 and CREX collaboration, Phys. Rev. Lett. 129 (2022) 042501.

O

2 Intermediate-density region ($\rho_B \simeq (1.5 - 2.5)\rho_0$)

- Astrophysical data of a canonical 1*.*4 *M[⊙]* neutron star
	- Neutron-star radius, *R*1*.*4: PSR J0030+0451 (NICER)
		- $1.44^{+0.15}_{-0.14}$ M_{\odot} and $13.02^{+1.24}_{-1.06}$ km, and $1.34^{+0.15}_{-0.16}$ M_{\odot} and $12.71^{+1.14}_{-1.19}$ km M. C. Miller, et al., Astrophys. J. Lett. 887 (2019) L24, T. E. Riley, et al., Astrophys. J. Lett. 887 (2019) L21.
	- Dimensionless tidal deformability, Λ1*.*4: GW170817 (gravitational-wave signals) $\Lambda_{1.4} = 190^{+390}_{-120}$ *[−]*¹²⁰ LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 119 (2018) 161101.

3 High-density region

- **•** Particle flow data in heavy-ion collisions (HICs)
- $M_{\rm NS}$ $> 2 M_{\odot}$ $M_{\rm NS}$ $> 2 M_{\odot}$

To clarify the properties of isospin-asymmetric nuclear matter

Discrepancy between between R_{skin} and $Λ_{1.4}$ Characteristics of isospin-asymmetric nuclear matter

Isospin-asymmetric matter properties

$$
E_{\text{sym}}(\rho_B) = E_{\text{sym}}(\rho_0) + L\chi + \frac{K_{\text{sym}}}{2!}\chi^2 + \mathcal{O}(\chi^3)
$$

Density-dependence of *E*sym(*ρ^B*) *⇒* focusing on *L*

- ▶ Astrophysical constraint: small *L* Dimensionless tidal deformability (GW170817)
 *∩*_{1.4} = 190^{−390}

[−]¹²⁰ B. P. Abbott, et al., Phys. Rev. Lett. 121, 161101.
- ▶ Terrestrial experiment: large *L* Parity-violating electron scattering, PREX-2 (²⁰⁸Pb) $R_{\rm skin}^{208}=0.283\pm0.071\ \mathsf{fm}$ PREX Collaboration, Phys. Rev. Lett. 126, 172502.

To solve this discrepancy, we construct **new effective interactions: "OMEG family"**

 \Box

Neutron skin puzzle ?

Due to less information on parity-violating electron scattering, further research is needed:

▶ Dispersive corrections in elastic electron-nucleus scattering P. Gueye et al., Eur. Phys. J. A 56, 126.

 \bigcirc

▶ *γZ*-exchange contributions to the parity-violating asymmetry, *Apv*

Qian-Qian Guo and Hai-Qing Zhou, Phys. Rev. C 108 (2023) 035501.

 $\overline{(\bigcirc)}$

Two aspects of neutron skin puzzle

1 Difficulty of reconciling the PREX-2 and CREX results simultaneously:

While ²⁰⁸Pb is estimated to have a relatively thick neutron skin of around 0.28 fm (PREX-2), 48Ca is estimated to have a significantly smaller skin of around 0.12 fm (CREX).

At present, there is no "theoretical" calculation...

2 Discrepancy between the PREX-2 experiment and the neutron-star observations:

Large $R_{\rm skin}^{208}$ (large *L*) versus small $R_{\rm NS}$ and Λ_{1.4} (small *L*)

We have to directly focus on the density profiles of $\rho_{ch}(\rho_p)$ and $\rho_W(\rho_n)$, not $R_{skin} = R_n - R_p$.

Parity-violating electron scattering Lead Radius Experiment (PREX) PREX Collaboration, Phys. Rev. Lett. 126 (2021) 172502.

 \Box

The **parity-violating** asymmetry *Apv* in longitudinally polarized elastic electron scattering off 208Pb nuclei:

$$
A_{\rho\nu}(Q^2) = \frac{d\sigma_R/d\Omega - d\sigma_L/d\Omega}{d\sigma_R/d\Omega + d\sigma_L/d\Omega} \simeq \frac{G_F Q^2|Q_W|}{4\sqrt{2}\pi\alpha Z} \frac{F_W(Q^2)}{F_{\text{ch}}(Q^2)}, \quad F_W(Q^2) = \frac{1}{Q_W} \int dr \,\rho_W(\mathbf{r}) e^{iQ\cdot\mathbf{r}},
$$

where *dσL*(*R*)*/d*Ω is the differential cross section for the scattering of left (right) handed electrons from ²⁰⁸Pb, *G^F* is the Fermi coupling constant, *FW*(ch) is the neutral weak (charge) form factor, and *Q^W* is the weak charge of ²⁰⁸Pb.

- 1 EM charge densities in nuclei have been very well measured for years. De Vries, et al., Atom. Data Nucl. Data Tabl. 36 (1987) 495–536. 2 EM charge is coupled to photon:
- a positive electric charge of +1*e*
- 3 Very good probe of the **proton** density.

Weak (W) charge

- 1 The Z⁰ boson couples to the weak charge, *Q^W* .
- 2 **Neutrons** strongly linked to weak charge of nucleus because of the small Q_W^p and large *Qⁿ W* :
	- $Q_W^n \simeq -1$ and $Q_W^p = 1 4 \sin^2 \Theta_W \simeq 0.08.$

Theoretical analyses of (weak) charge density

Charge density with a dipole-type (Sachs) form factor: elastic electron scattering

$$
\rho_{\rm ch}(\mathbf{r}) = \int d\mathbf{r}' \, \rho_{\rm sn} \left(\mathbf{r} - \mathbf{r}' \right) \rho_p(\mathbf{r}'), \quad \rho_{\rm sn} \left(\mathbf{r} - \mathbf{r}' \right) = \frac{\mu^3}{8\pi} \exp \left(-\mu \left| \mathbf{r} - \mathbf{r}' \right| \right)
$$

where the cut off parameter is given by $\mu = 0.71$ GeV.

Weak charge density (a spin-zero nucleus): Parity-violating electron scattering Z. Lin, and C. J. Horowitz, Phys. Rev. C. 92 (2015) 014313.

$$
\rho_W(r) = 4 \int dr' \left[G_p^z \left(|r - r'| \right) \rho_p \left(r' \right) + G_n^z \left(|r - r'| \right) \rho_n \left(r' \right) \right],
$$

where G_{p}^{z} and G_{n}^{z} are the Fourier transformations of weak from factors for the coupling of a Z⁰ to proton or neutron:

$$
G_{p}^{z} = \frac{1}{4} \left(G_{p}^{E} - G_{n}^{E} \right) - \sin^{2} \Theta_{W} G_{p}^{E} - \frac{1}{4} G_{s}^{E}, \quad G_{n}^{z} = \frac{1}{4} \left(G_{n}^{E} - G_{p}^{E} \right) - \sin^{2} \Theta_{W} G_{n}^{E} - \frac{1}{4} G_{s}^{E}.
$$

If the contribution of strange quarks is ignored, then

$$
\rho_W(r) \simeq Q_W^{\rho} \rho_{\rm ch}(r) + Q_W^{n} \int dr' \left[G_{\rho}^{E} \left(\left| r - r' \right| \right) \rho_n + G_n^{E} \left(\left| r - r' \right| \right) \rho_{\rho} \right]
$$

T. Miyatsu et al. — Nuclear equation of state from terrestrial experiments and astrophysical observations — 8/18

,

 $\overline{(\bigcirc)}$

.

PREX-2 experiment

Large neutron skin thickness, $R_{\text{skin}} = R_p - R_p = 0.283$ fm PREX Collaboration, Phys. Rev. Lett. 126 (2021) 172502.

 \Box

Weak radius:

$$
R_W^2 = \frac{1}{Q_W} \int dr \, r^2 \rho_W(r) \, , \quad Q_W = \int dr \, \rho_W(r) = Z Q_W^p + N Q_W^n.
$$

 \bigcirc

0 1 2 3 4 5 6 7 8 9 10 radius r [fm] 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 density ρ [fm^{-3}]
 $\frac{9}{6}$ $\frac{9}{6}$ $\frac{9}{6}$ **Weak skin ^b**^ρ **Interior Baryon Density** $\frac{-\rho_w}{\sqrt{2\pi}}$ **Extracted from PREX R^W** ρ_{ch} **Rch** $\overline{^{208}}$ Pb ρ_{ch} data 2-parameter Fermi fit

 $\frac{\sinh(c/a)}{\cosh(r/a)+\cosh(c/a)}$. TABLE III. PREX-1 and -2 combined experimental results for ²⁰⁸Pb. Uncertainties include both experimental and theoretical contributions. $^{208}\!Pb$ Parameter Value Weak radius (R_W) 5.800 ± 0.075 fm Interior weak density (ρ_W^0) Interior baryon density (ρ_b^0)

The ρ_b^0 is approximately calculated using a symmetrized two-parameter Fermi function: ρ *W* (*r*, *c*, *a*) = $\rho_b^0 \frac{\sinh{(c/a)}}{\cosh{(r/a)} + \cosh{(r/a)}}$

 -0.0796 ± 0.0038 fm⁻³ $0.1480 \pm 0.0038~\rm fm^{-3}$ Neutron skin $(R_n - R_p)$ 0.283 ± 0.071 fm T. Miyatsu et al. — Nuclear equation of state from terrestrial experiments and astrophysical observations — 9/18

RMF models with isoscalar- and isovector-meson mixing **T. Miyatsu**, M.-K. Cheoun and, K. Saito, Astrophys. J. 929, 82 (2022).

The interacting Lagrangian density including the isoscalar (*σ* and *ω ^µ*) and isovector (*⃗δ* and $\vec{\rho}^{\mu}$) mesons as well as nucleons ($N = p, n$) is given by

$$
\mathcal{L}_{\text{int}} = \sum_N \bar{\psi}_N \big[g_{\sigma} \sigma - g_{\omega} \gamma_{\mu} \omega^{\mu} + g_{\delta} \vec{\delta} \cdot \vec{\tau}_N - g_{\rho} \gamma_{\mu} \vec{\rho}^{\mu} \cdot \vec{\tau}_N \big] \psi_N - U_{\text{NL}}(\sigma, \omega, \vec{\delta}, \vec{\rho}).
$$

• The nonlinear potential is here supplemented as

RMF models with isoscalar- and isovector-meson mixing **T. Miyatsu**, M.-K. Cheoun and, K. Saito, Astrophys. J. 929, 82 (2022).

The interacting Lagrangian density including the isoscalar (*σ* and *ω ^µ*) and isovector (*⃗δ* and $\vec{\rho}^{\mu}$) mesons as well as nucleons ($N = p, n$) is given by

$$
\mathcal{L}_{\text{int}} = \sum_N \bar{\psi}_N \big[g_{\sigma} \sigma - g_{\omega} \gamma_{\mu} \omega^{\mu} + g_{\delta} \vec{\delta} \cdot \vec{\tau}_N - g_{\rho} \gamma_{\mu} \vec{\rho}^{\mu} \cdot \vec{\tau}_N \big] \psi_N - U_{\text{NL}}(\sigma, \omega, \vec{\delta}, \vec{\rho}).
$$

• The nonlinear potential is here supplemented as

RMF models with isoscalar- and isovector-meson mixing **T. Miyatsu**, M.-K. Cheoun and, K. Saito, Astrophys. J. 929, 82 (2022).

The interacting Lagrangian density including the isoscalar (*σ* and *ω ^µ*) and isovector (*⃗δ* and $\vec{\rho}^{\mu}$) mesons as well as nucleons ($N = p, n$) is given by

$$
\mathcal{L}_{\text{int}} = \sum_N \bar{\psi}_N \big[g_{\sigma} \sigma - g_{\omega} \gamma_{\mu} \omega^{\mu} + g_{\delta} \vec{\delta} \cdot \vec{\tau}_N - g_{\rho} \gamma_{\mu} \vec{\rho}^{\mu} \cdot \vec{\tau}_N \big] \psi_N - U_{\text{NL}}(\sigma, \omega, \vec{\delta}, \vec{\rho}).
$$

• The nonlinear potential is here supplemented as

RMF models with isoscalar- and isovector-meson mixing **T. Miyatsu**, M.-K. Cheoun and, K. Saito, Astrophys. J. 929, 82 (2022).

The interacting Lagrangian density including the isoscalar (*σ* and *ω ^µ*) and isovector (*⃗δ* and $\vec{\rho}^{\mu}$) mesons as well as nucleons ($N = p, n$) is given by

$$
\mathcal{L}_{\text{int}} = \sum_N \bar{\psi}_N \big[g_{\sigma} \sigma - g_{\omega} \gamma_{\mu} \omega^{\mu} + g_{\delta} \vec{\delta} \cdot \vec{\tau}_N - g_{\rho} \gamma_{\mu} \vec{\rho}^{\mu} \cdot \vec{\tau}_N \big] \psi_N - U_{\text{NL}}(\sigma, \omega, \vec{\delta}, \vec{\rho}).
$$

• The nonlinear potential is here supplemented as

RMF models with isoscalar- and isovector-meson mixing **T. Miyatsu**, M.-K. Cheoun and, K. Saito, Astrophys. J. 929, 82 (2022).

 $\overline{\mathbf{C}}$

The interacting Lagrangian density including the isoscalar (*σ* and *ω ^µ*) and isovector (*⃗δ* and $\vec{\rho}^{\mu}$) mesons as well as nucleons ($N = p, n$) is given by

$$
\mathcal{L}_{\text{int}} = \sum_N \bar{\psi}_N \big[g_{\sigma} \sigma - g_{\omega} \gamma_{\mu} \omega^{\mu} + g_{\delta} \vec{\delta} \cdot \vec{\tau}_N - g_{\rho} \gamma_{\mu} \vec{\rho}^{\mu} \cdot \vec{\tau}_N \big] \psi_N - U_{\text{NL}}(\sigma, \omega, \vec{\delta}, \vec{\rho}).
$$

O The nonlinear potential is here supplemented as

erical Result

Neutron skin thickness of ²⁰⁸Pb and ⁴⁸Ca Using the effective interactions based on RMF models

The OMEG family is constructed so as to reproduce the characteristics of finite nuclei and nuclear matter as well as neutron stars.

T. Miyatsu et al. — Nuclear equation of state from terrestrial experiments and astrophysical observations — 13/18

Ō

Summary \bigcirc \Box This work was supported by the NRF of Korea (Grant Nos. RS-2023-00242196, NRF-2021R1A6A1A03043957 and NRF-2020R1A2C3006177). To understand nuclear and neutron-star physics in the same framework: Taking into account the terrestrial experiments and astrophysical observations of neutron stars, we have constructed new EoSs for neutron stars using the RMF model with nonlinear couplings between the isoscalar and isovector mesons. **●** We have introduced the *δ*-*N* coupling and *σ*-*δ* mixing in the conventional RMF models. Neutron skin puzzle: 1 We have introduced the *δ*-*N* coupling to solve the neutron skin puzzle (1). However it is still difficult to explain. We perhaps may study the density profiles of *ρ*ch (*ρp*) and *ρ^W* (*ρn*) in detail. 2 It is found that the σ -*δ* mixing is very powerful to understand the terrestrial experiments and astrophysical observations of neutron stars self-consistently—puzzle(2). Large *R*²⁰⁸, (PREX-2) and <mark>small *R*_{NS} (NICER) Λ_{1.4} (GW170817)</mark> T. Miyatsu et al. — Nuclear equation of state from terrestrial experiments and astrophysical observations — 18/18

Outline Introduction Theoretical framework Numerical Results Summary

Summary \bigcap \Box This work was supported by the NRF of Korea (Grant Nos. RS-2023-00242196, NRF-2021R1A6A1A03043957 and NRF-2020R1A2C3006177). To understand nuclear and neutron-star physics in the same framework: Taking into account the terrestrial experiments and astrophysical observations of neutron stars, we have constructed new EoSs for neutron stars using the RMF model with nonlinear couplings between the isoscalar and isovector mesons. **●** We have introduced the *δ*-*N* coupling and *σ*-*δ* mixing in the conventional RMF models. Neutron skin puzzle: 1 We have introduced the *δ*-*N* coupling to solve the neutron skin puzzle (1). However it is still difficult to explain. We perhaps may study the density profiles of *ρ*ch (*ρp*) and *ρ^W* (*ρn*) in detail. 2 It is found that the σ -*δ* mixing is very powerful to understand the terrestrial experiments and astrophysical observations of neutron stars self-consistently—puzzle(2). Large *R*²⁰⁸, (PREX-2) and <mark>small *R*_{NS} (NICER) Λ_{1.4} (GW170817)</mark> **Thank You for Your Attention.** T. Miyatsu et al. — Nuclear equation of state from terrestrial experiments and astrophysical observations — 18/18

Outline Introduction Theoretical framework Numerical Results Summary