Low-energy electron scattering facility at RARis

Yuki Honda

RARiS, Tohoku Univ., Japan

for the ULQ2 collaboration.

Oct. 29, 2024

Research Center for Accelerator and Radioisotope Science (RARiS)

Oct. 29, 2024

Accelerators in RARIS Mikamine cite (old ELPH)

Oct. 29, 2024

LEES2024, YUKI HONDA

1.3 GeV BST ring

70 MeV e- Linac

RARiS's linac energy is very suitable to measure the 2nd order for the light nuclei, and 4th or 6th order for the heavy nuclei.

Oct. 29, 2024

LEES2024, YUKI HONDA

Oct. 29, 2024

Unfortunately, beam energy spread and beam size was too wide for the electron scattering.

Oct. 29, 2024

Beamline upgrade

LEES2024, YUKI HONDA

Beamline upgrade

LEES2024, YUKI HONDA

Beamline upgrade

Old

LEES2024, YUKI HONDA

Oct. 29, 2024

New!!

LEES2024, YUKI HONDA

Oct. 29, 2024

■ ULQ2 beamline

- $E_e = 10 65 \text{ MeV}$
- $\sigma_E / E_e \le 0.1 \%$
- $\sigma_{x,y} \leq 1 \text{ mm}$
- $I_{\rm max} \sim 1 \,\mu A$

Spectrometer & beamline construction

In 2017

LEES2024, YUKI HONDA

Oct. 29, 2024

Since 2019

Spectrometer & beamline construction

In 2017

LEES2024, YUKI HONDA

Oct. 29, 2024

Since 2021

Spectrometer for low-energy electron

Oct. 29, 2024

- Twin electro-magnetic spectrometer $\theta = 30^\circ - 150^\circ$ Foreground measurement
 - Luminosity monitor, CH/CD ratio monitor
- Specialized for low-energy electron $E_e = 10 - 65 \,\mathrm{MeV}$

 - Focal plane detector

LEES2024, YUKI HONDA

Spectrometer design

LEES2024, YUKI HONDA

J-PARC muon g-2/EDM Test module2

Readout boards "Multi-Slit128A board" Four ASICs "Slit128A" (128 ch/chip)

- Single-sided silicon detector (SSSD)
- Active area
- Thickness
- Strip pitch
- Strip length
- No. of strips

- 97.28 mm × 97.28 mm
- 0.32 mm
- 0.19 mm
- 48.575 mm
- 512 ch \times 2

Spectrometer optics : $(x | \delta)$

 \square Relation between (x,y) and (p, θ)

- $\square Momentum dispersion : x = (x | \delta)\delta + \cdots$
- □ We changed the magnetic field (B) of the spectrometer instead of the beam momentum.

Spectrometer optics : $(y|\theta), (y|\theta\delta)$

 \square Relation between (x,y) and (p, θ) **\Box** Angle dispersion : $y = (y|\theta)\Delta\theta + (y|\theta\delta)\Delta\theta\delta + \cdots$

LEES2024, YUKI HONDA

Oct. 29, 2024

345.440 mT 321.513 mT 318.147 mT

Spectrometer optics : $(y|\theta), (y|\theta\delta)$

 \square Relation between (x,y) and (p, θ) **\Box** Angle dispersion : $y = (y|\theta)\Delta\theta + (y|\theta\delta)\Delta\theta\delta + \cdots$

LEES2024, YUKI HONDA

Oct. 29, 2024

$$(y|\theta) = 1.000(4)$$
$$(y|\theta\delta) = 2.01(14)$$
$$\sigma_{\theta} \le 5 \text{ mrad}$$

19

Spectrometer optics : summary

LEES2024, YUKI HONDA

radius	50 cm
iding angle	90°
B _{Max}	0.4 T @ 60 MeV
gap	70 mm
$(x \delta)$	864.8(3) mm
σ_p/p	5×10^{-4}
p bite	11 %
$(y \theta)$	1.000(4)
$\sigma_{ heta}$	5 mrad
olid angle	10 mSr

Beam momentum determination

Unfortunately, we can't obtain the exact beam momentum from the accelerator setting. We obtained it from the momentum ratio of the scattered electrons from H and C.

From kinematics,

From experiment,

$$P_{H(C)} = P_0(1 + \delta_{H(C)})$$

$$\delta_{H(C)} \sim x_{H(C)}/(x|\delta)$$

$$P_C = \frac{1 + \delta_C}{1 + \delta_H}$$

LEES2024, YUKI HONDA

Physics projects in RARIS

Four projects by low-energy electron scattering are ongoing.

- ULQ2 by Legris Clement, this session.
 - Proton radius measurement
- ULQ2-D by Taiga Goke, this session.

Deuteron radius measurement

by Rika Danjo, poster session, Toshio Suzuki, Tuesday morning session. Technical development of neutron distribution radius measurement with lowenergy electron scattering off ²⁰⁸Pb

2⁺ (~2.7 MeV) state search of ¹⁵⁴Sm by Kengo Hotta, poster session. by Takaharu Otsuka, yesterday. Reveal triaxial asymmetry of nuclei.

Oct. 29, 2024

Summary

- A low-energy electron scattering facility has been developed at RARiS, Tohoku University.
- The beam energy region is very suitable for measuring 2nd and 4th moments of the nuclei.
- Twin spectrometers are developed the low energy electron scattering.
- Four physics projects are ongoing.
 - Proton charge radius measurement
 - Deuteron charge radius measurement
 - Neutron distribution radius measurement for ²⁰⁸Pb
 - \square 2⁺ state search of ¹⁵⁴Sm

