

1. Introduction

SCRIT electron scattering facility

M. Wakasugi et al., NIMB 317 (2013) 668. T. Ohnishi et al., NIMB 541 (2023) 380.

Requirements for RI beams in SCRIT

Low-energy (\sim keV) High quality (small emittance) High intensity (\sim 10⁸ ions/pulse)

1. Photofission of uranium

Photofission (Ex \sim 15 MeV)

Thicker target can be applied.

2. Low-energy and high intensity RI beam separator

1 kW e-beam + U 30g \rightarrow 10¹¹ fissions/sec (¹³²Sn 10⁹/sec)

First electron-beam ISOL facility in Japan First full-scale ISOL facility in RIKEN

3. Sharing of electron beam driver

Shared use with the injection to storage ring \rightarrow Cost effective

4. Independent RI beam separator

1. Photofission of uranium

Photofission (Ex \sim 15 MeV)

Thicker target can be applied.

2. Low-energy and high intensity RI beam separator

1 kW e-beam + U 30g \rightarrow 10¹¹ fissions/sec (¹³²Sn 10⁹/sec)

First electron-beam ISOL facility in Japan First full-scale ISOL facility in RIKEN

3. Sharing of electron beam driver

Shared use with the injection to storage ring → Cost effective

4. Independent RI beam separator

Photo fission vs Proton induced fission

Photofission has advantage to produce more neutron rich (2 \sim 3 neutron) unstable nuclei.

1. Photofission of uranium

Photofission (Ex \sim 15 MeV) \rightarrow Thicker target can be applied. More neutron rich unstable nuclei than proton beam

2. Low-energy and high intensity RI beam separator

1 kW e-beam + U 30g \rightarrow 10¹¹ fissions/sec (¹³²Sn 10⁹/sec)

First electron-beam ISOL facility in Japan First full-scale ISOL facility in RIKEN

3. Sharing of electron beam driver

Shared use with the injection to storage ring → Cost effective

4. Independent RI beam separator

1. Photofission of uranium

Photofission (Ex \sim 15 MeV) \rightarrow Thicker target can be applied. More neutron rich unstable nuclei than proton beam

2. Low-energy and high intensity RI beam separator

1 kW e-beam + U 30g \rightarrow 10¹¹ fissions/sec (¹³²Sn 10⁹/sec)

First electron-beam ISOL facility in Japan First full-scale ISOL facility in RIKEN

3. Sharing of electron beam driver

Shared use with the injection to storage ring \rightarrow Cost effective

4. Independent RI beam separator

1. Photofission of uranium

Photofission (Ex \sim 15 MeV) \rightarrow Thicker target can be applied. More neutron rich unstable nuclei than proton beam

2. Low-energy and high intensity RI beam separator

1 kW e-beam + U 30g \rightarrow 10¹¹ fissions/sec (¹³²Sn 10⁹/sec)

First electron-beam ISOL facility in Japan First full-scale ISOL facility in RIKEN

3. Sharing of electron beam driver

Shared use with the injection to storage ring → Cost effective

4. Independent RI beam separator

2. ERIS setup

Production target + Ion source + Transport line

- 2009 Construction start
- 2011 Commissioning & Uranium target production
- 2013 First RI beam produced by uranium photo-fission
- 2016 Grid operation for pre-stacking
- 2017 Surface ionization type ion source
- 2022 e-RI scattering experiment using online-produced RI

Production target

Self-made Uranium carbide disk

Uranyl nitrate solution mixed with graphite powder (20µm)

Oxidization around 500 °C 180 MPa compression with no binder

Φ 20 mm, t = 1 mm

Uranium-oxide disk

Carbothermal reduction $U_3O_8 + C \rightarrow 3UO_2 + CO_2$ at 600-800°C <u> $UO_2 + 4C \rightarrow UC_2 + 2CO$ </u> at 1100-1600°C Ref. Gmelin handbook Supp. Vol. C12

Uranium carbide disk

Φ 18 mm, t 0.8 mm
43 disks U-28 g
→ U density 3.2 g/cm3)

Left side: Ta converter Right side: C spacer

Ion source at ERIS

10

3. Results

RI production with FEBIAD

FEBIAD ion source U 15g 10W electron beam

Overall efficiency = Release×<u>Ionization×Transport</u> Exp./Calc. Target~Ionization from ¹²⁹Xe gas (14~15%)

	Rate at 10W (atoms/s)	Calc at 10W (atoms/s)	Overall	Release
¹³⁸ Xe	3.9×10 ⁶	7.1×10^{7}	5.5 %	40 %
¹³² Sn	2.6×10 ⁵	1.3×10^{7}	2.0 %	14 %

Two stage stacking inside ERIS & FRAC

Conversion from DC to pulse beam

¹³⁷Cs beam production for e-RI scattering

ERIS 40 Hz, FRAC 1 Hz, RTM 15W, U 28g at FRAC exit

¹³⁷Cs pulse beam: 2×10⁷ ions/pulse to SCRIT(ERIS 40Hz, FRAC 0.25 Hz)

World's first electron scattering with online-produced RI

Towards the supply of high intensity RI beams

1. Upgrading of e-beam driver

Improvement items for $1\sim 2 \text{ kW}$ e-beam

High frequency ($\sim 10 \text{ Hz} \rightarrow \sim 100 \text{ Hz}$) High peak current ($\sim 0.5 \text{ mA} \rightarrow \sim 2.5 \text{ mA}$) Long pulse width ($\sim 5 \text{ µs} \rightarrow \sim 10 \text{ µs}$) Upgrading of RTM has been already started. New klystron system New injection line...

2. Upgrading of ERIS

Improvement of overall efficiency Uranium carbide target → Nano material More efficient structure of ion source Improvement of RI separation

Isobar separation → limura-san's talk&Matsubara-san's poster

- 3. High-power e-beam operation
 - Shielding
 - Maintenance scenario
 - Target operation

Shielding

-400

Additional

shield

Items for consideration in shielding

- Radiation level for outside of controlled area
- Prevent of radioactivation for electronics and devices

Phits calculation (\pm 5mm from beam plane)

Evaluation of radiation level

Enhancement of shielding

Ceiling shield for ion source Concreate: 2.4x2.4x0.6m³ Pb block: 0.8x0.8x0.1m³

Maintenance scenario

Residual radiation from target

Measured data: 20 cm from target with 20W ${\sim}50~\mu\text{Sv/h}$ after 2 weeks

➔ 2.5 mSv/h after 2 weeks @ 1kW

 \rightarrow < 20 µSv/h after 2 years...

Calculation \rightarrow 10 times larger Estimation of various locations

Waiting time for work: several weeks

Remote handling system

Condition: 20 min. work, 2 mSv/h at 1m

Simpler system than other facilities

- Crane system
- Specialized working tools
- Preparation of storage space

Higher power(~100 kW) facility

ISAC target module at TRIUMF

G. Minor et al., Nuclear Engineering and Technology 53 (2021) 1378

Target operation

Uranium carbide → Carbon nano material Fast release, Long lifetime A. Gottberg, NIMB 376 (2016) 8

Problem: Easily oxidization in the air

Uranium carbide with graphene \rightarrow Oxidization began within a minute of being released in the air.

Present: Small glove box (only target) → Large glove box (Ion source)

Summary

- ERIS at the SCRIT electron scattering facility was constructed and the development has been continued.
- The world's first electron scattering with online-produced RI was successfully conducted.
- The upgrade for high intensity RI beam has been already started.

Electron scattering with ¹³²Sn will be performed soon.

For high power e-beam operation, global collaboration with other ISOL facilities is very important.

SCRIT collaboration

D. Abe¹, Y. Abe², R. Danjyo¹, A. Enokizono², T. Goke¹, M. Hara², Y. Honda¹,
T. Hori², S. Iimura³, S. Ichikawa², Y. Ishikura¹, K. Ishizaki¹, Y. Ito⁴, K. Kurita³,
C. Legris¹, Y. Maeda⁴, Y. Maehara⁴, R. Obara¹, R. Ogawara², T. Ohnishi²,
T. Suda^{1,2}, M. Tachibana⁴, T. Tamae¹, K. Tsukada^{2,4}, M. Wakasugi^{2,4},
M. Watanabe², H. Wauke^{1,2}, T. Yamano³, S. Yoshida⁴

¹ELPH Tohoku University, ²RIKEN, Nishina Center, ³Rikkyo University, ⁴ICR Kyoto University

Thank you for your attention!