

Laboratoire de Physique des 2 Infinis

Spatial Moments (r^{ λ **}) of the Proton Charge Density**

Dominique Marchand

On behalf of: *M. Atoui, M. Barbaro, M. Hoballah, C. Kairouz, M. Lassaut, D.M., G. Quéméner, E. Voutier*

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 824093

Spatial Moments and the Proton charge radius

 $R_p = \sqrt{2 \times r^2} > R_p$ related to the **moment of order 2** of the radial density ρ

«experimentally» extracted from

(ordinary and muonic) **Hydrogen spectroscopy**

Lepton (e or μ) proton elastic scattering (indirect measurement)

June 2019 ➞ **July 2024** *D. M., Prof. R. Pohl (Mainz)* (22 institutions, 11 countries)

To **stimulate** a **real synergy** between all the physicists involved in the world-wide **experimental** and **theoretical** effort, from **atomic spectroscopy** and **lepton scattering,** in order to investigate / understand persistent discrepancies on the **value of the proton charge radius.**

International Workshops

June 20-23 », 2022, Sorbonne Université, Paris https://indico.mitp.uni-mainz.de/e/pren2022

June 26-30, 2023, J.G. University & HIM, Mainz https://indico.him.uni-mainz.de/event/172/

Nuclear Radius Extraction Collaboration (NREC), J. Bernauer *et al.* Kick-off meeting, 6-10 mai, 2024, CFNS, Stony Brook University, New-York

LEES 2024, Oct. 28 – Nov. 1st, 2024

Some selected PREN publications

General review / outreach:

***** J.-P. Karr, D. M., « **Progress on the proton-radius puzzle** »,
Nature, « New & views », Nature Publishing Group, **2019**, 575 (7781), pp.61-6
(10.1038/d41586-019-03364-z). ⟨hal-02392917⟩

 0.90 $H - D$ CODATA 2014 ^v J.-P. Karr, D. M., E. Voutier, « **The proton size** », *Nature Rev. Phys.*, **2020**, 2 (11), pp.601-614. 0.85 ⟨10.1038/s42254-020-0229-x⟩. ⟨hal-03011020⟩ $\widehat{\mathsf{E}}$ 0.80 https://rdcu.be/cyFp5 (open access -read only- shared link) 0.75 Single experiments $SLAC56$ (ref.⁶¹) \rightarrow Orsay $Orsav66$ (ref. 142) 0.70

Phenomenological activities:

- ◆ M. Hoballah, M.B. Barbaro, R. Kunne., M. Lassaut, D. M., et al., « **Connecting spatial moments and momentum densities** », *Physics Letters B*, ⟨10.1016/j.physletb.2020.135669⟩. ⟨hal-02917232⟩
- **M. Atoui, M.B. Barbaro, M. Hoballah, C. Keyrouz, M. Lassaut, D. M., G. Quéméner, « Determination of the moments of the proton charge density »,** *Phys. Rev. C*

LEES 2024, Oct. 28 – Nov. 1st, 2024, Sei

MAMI17 (ref.91)

1960

1970

\cdot Motivation

- \clubsuit Novel approach to extract the moments of the charge distribution from electron-proton scattering data: the **Integral Method**
- \clubsuit Application to proton electric form factor data taking into account statistical & systematics uncertainties
- **Exercices** / Perspectives

Proton Radius extracted from electron-proton elastic scattering

$$
\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[\frac{G_{Ep}^2(Q^2) + \tau G_{Mp}^2(Q^2)}{1+\tau} + 2\tau \tan^2\left(\frac{\theta}{2}\right) G_{Mp}^2(Q^2)\right]
$$

$$
\sum_{i=1}^{n} \frac{1}{i} \sum_{i=1}^{n} \frac
$$

 $\overline{(G_E)}$ and G_M Sachs' electric and magnetic form factors

$$
G_{Ep}(Q^2) = 1 - \frac{Q^2}{6} < r_p^2 > + \frac{Q^4}{120} < r_p^4 > + \dots \tag{}
$$

 $R_p = \sqrt{ \langle r^2 \rangle} = \sqrt{-6 \frac{d G_{Ep}(Q^2)}{d Q^2}}$

e

D

« Derivative method »

« Standard method »: proton charge radius (r_p) moment of order 2 of the radial charge density ρ **is extracted from Rosenbluth separation or very low q2 data, where GE dominates.**

BUT the *Q2***=0 limit cannot be reached in lepton scattering**

Slope of G_F at $Q^2 = 0$ $(Q^2 = -q^2)$

D'

 $=$ > Relying on interpolation (parametrization) of G_F data **to extrapolate to** *Q2***=0**

Extraction of Spatial Moments through the « Derivative Method »

$$
\langle r^{\lambda} \rangle = \int_{\mathbb{R}^3} d^3 \mathbf{r} \, r^{\lambda} \, \rho_E(\mathbf{r})
$$

More generally all **positive even** order moments can be determined based on the « **derivative method** »:

$$
\langle r^{2j} \rangle = (-1)^j \frac{(2j+1)!}{j!} \frac{d^j G_E(k^2)}{d(k^2)^j} \bigg|_{k^2=0}
$$

conside

$$
\text{ering} \hspace{5mm} \rho_E(\mathbf{r}) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \mathrm{d}^3 \mathbf{k} \, e^{i \mathbf{k} \cdot \mathbf{r}} G_E(k^2)
$$

(Valid for non-relativistic description; Breit frame) **Inverse of the Fourrier Transform** of the Sach's form factor G_E

All **even positive order moments** of the radial distribution can be related to zero 4-momentum squared derivatives of the electric form factor and **provide complementary information on the charge distribution inside the proton,** *e.g.* **high order moments** describe the **tail of the charge distribution.**

Issues faced relying on the « derivative method »:

- \triangleright Based on the zero 4-momentum squared extrapolation of the G_E q^2 dependency
- Ø **Sensitivity to the functional form used for the parametrization (interpolation)**
- Ø **Sensitivity to the** *q2 range used for the interpolation*
- Ø *Give only access to positive even moments*

Novel approach: Integral Method

Spatial Moments of the charge density: Integral Method (IM)

The **moment of any real order** λ can be expressed as an *integral over the full momentum space*

$$
\langle \mathbf{r}^{\lambda}\rangle = \left(r^{\lambda}, \rho_E\right) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} d^3\mathbf{k} \, G_E(\mathbf{k}) \int_{\mathbb{R}^3} d^3r \, r^{\lambda} \, e^{i\mathbf{k} \cdot \mathbf{r}}
$$

Spatial Moments of the charge density: Integral Method (IM)

The **moment of any real order** λ can be expressed as an **integral over the full momentum space**

 $g_{\lambda}(\mathbf{k}) = \int d^3\mathbf{r} r^{\lambda} e^{i\mathbf{k}\cdot\mathbf{r}}$ can be treated as a **distribution**

Spatial Moments of the charge density: Integral Method (IM)

The **moment of any real order** λ can be expressed as an **integral over the full momentum space**

 $g_{\lambda}(\mathbf{k}) = \int d^3\mathbf{r} r^{\lambda} e^{i\mathbf{k}\cdot\mathbf{r}}$ can be treated as a **distribution**

« Connecting spatial moments and momentum densities », M. Hoballah et al, Phys. Lett. B 808 (2020) 135669

Exponential regularization (IM2)

 \lt

$$
r^{\lambda} \geq \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} d^3 \mathbf{k} G_E(\mathbf{k}) g_{\lambda}(\mathbf{k}) \qquad g_{\lambda}(\mathbf{k}) = \int_{\mathbb{R}^3} d^3 r \, r^{\lambda} e^{i\mathbf{k} \cdot \mathbf{r}} = \lim_{\epsilon \to 0+} \int d^3 \mathbf{r} \, r^{\lambda} e^{-\epsilon \mathbf{r}} e^{i\mathbf{k} \cdot \mathbf{r}}
$$

\nStandard technique to regularize the Fourier transform of the Coulomb potential

The distribution $g_\lambda(\bf{k})$ is the weak limit for $\epsilon \to 0$ of a convergent integral $I_\lambda(\bf{k},\epsilon)$ which can be evaluated analytically

$$
g_{\lambda}(\mathbf{k}) \text{ analytical integration} \qquad \qquad \mathcal{I}_{\lambda}(k,\epsilon) = \frac{4\pi\,\Gamma(\lambda+2)\,\sin\left[(\lambda+2)\textrm{Arctan}\,(k/\epsilon)\right]}{k(k^2+\epsilon^2)^{\frac{\lambda}{2}+1}}
$$

$$
\left|\langle r^\lambda\rangle=\frac{2}{\pi}\,\Gamma(\lambda+2)\lim_{\epsilon\to 0^+}\int_0^\infty\mathrm{d}k\,G_E(k^2)\,\frac{k\sin\left[(\lambda+2)\mathrm{Arctan}\,(k/\epsilon)\right]}{(k^2+\epsilon^2)^{\lambda/2+1}}\right|\,\frac{(\lambda>-3)}{(\lambda-3)^2}
$$

Exponential regularization (IM2)

$$
\langle r^{\lambda} \rangle = \frac{2}{\pi} \Gamma(\lambda + 2) \lim_{\epsilon \to 0^{+}} \int_{0}^{\infty} dk \, G_{E}(k^{2}) \frac{k \sin[(\lambda + 2) \text{Arctan}(k/\epsilon)]}{(k^{2} + \epsilon^{2})^{\lambda/2 + 1}} \frac{[(\lambda - 3)]}{[(\lambda - 3)]}
$$

For $\lambda = m$ positive integer: $\langle r^{m} \rangle = \frac{2}{\pi} (m + 1)!$ $\lim_{\epsilon \to 0^{+}} \epsilon^{m+2} \int_{0}^{\infty} dk \, k \, G_{E}(k^{2}) \frac{\Phi_{m}(\frac{k}{\epsilon})}{(k^{2} + \epsilon^{2})^{m+2}}$ with $\Phi_{m}(x) = \sum_{j=0}^{m+2} \sin\left(\frac{j\pi}{2}\right) {m+2 \choose j} x^{j}$
For even *m*, the IM recovers [formally the same quantities as the derivative method

Advantages of the IM over the derivative method:

- For $\lambda = m$

- 1. can access **moments of any real order >-3, including odd and negative,** carrying complementary information on the charge distribution inside the proton
- **2.** data over the full Q² range is used, without relying on the zero-momentum extrapolation
- 3. takes into account the **full experimentally probed momentum** region, **improving the statistics**
	- \dots **Short-distance** behaviour of the charge distribution is encoded in the **negative order** moments particularly sensitive to the **large k2-dependence** of GE (k2)
	- \dots **Long-distance** behaviour is encoded in the high **positive order** moments sensitive to the **low k²-dependence**.

Truncated Moments

Experimental measurements of the Form Factor do not extend to infinite k^2 :

- **But:** Integrals are most likely to saturate at a squared four-momentum transfer value well below infinity. \bullet
- Hence: Cut-off Q replaces the infinite integral boundary: truncated moments. \bullet

Moment determination from G_E experimental data

Simultaneous Fit of G_F experimental data

Functional Form: polynomial ratio parametrisation

 $G_E(k^2) = \eta_i$ $1 + a_1 k^2$ $1 + b_1 k^2 + b_2 k^4 + b_3 k^6$

Normalization parameters η_i :

Recent experiments (2010-21):

Systematic errors of the fit parameters reflect the experimental data systematics:

- 1. The data are shifted (upwards or downwards the central point) with their respective systematic errors: 2^{19} configurations
- 1. For each configuration a fit is performed and parameters are extracted
- 2. Systematics are evaluated from the difference of the parameter value WRT the reference fit

Old Experiments:

Deviations up to 17% (still reasonable at large k^2 where *GE* gives small contribution to the cross section)

Deviation from unity is smaller than 1%

Evaluation of Moments

Moment Statistical Errors

Procedure:

- ➢Make **replicas of parameters (50 000)** following the assumption of statistical errors associated to data
- ➢The **moments are estimated from each replica**
- ➢A dedicated study of the **variance of the replicas** is performed from which the statistical errors on the moments are obtained

Larger statistical errors for high order positive moments (probing the large distance behavior of the charge density): lack of measurements at ultra low k^2

Moment Systematics Errors

Sources of **systematic errors**:

- 1. Originating from the systematic error that is reported by each considered **experiment on**
- 2. **Discrepancy** between **truncated** and **exact moments**
- 3. Bias that could be generated on the fit parameters from **the fitting model itself**
- 4. Bias induced by the normalisation parameter η_i
- 5. Error coming from the **choice of the fitting model (ex:** Polynomial ratios, polynomials, Inverse polynomials, Constant Fraction (CF) expansion

Fitting model choice is the **most significant systematic** error in the IM method.

This error is sometimes **omitted in "proton radius puzzle" analyses.**

Using a mathematical function obtained from a physics model is the only way to minimize this error.

Moments and charge distribution

Proton Charge Radius

 $R_p = \sqrt{r^2} = 0.8329 \pm 0.0056(stat) \pm 0.0097(syst)fm$

- **consistent with Codata 2018 value 0.8414(19) fm**
- within 2σ from μ *H* spectroscopic measurement
- 1% accuracy: remarkable for e-p measurement but still far from atomic measurements precision

Proton Charge Radius

- Data are grouped into **5 time periods**, from 1961 to 2021

- For each period we have performed the IM analysis estimating the **radius** and the **systematic errors**

Year

Simultaneous Fit of G_F Data: A1 Cross section Data (1360 points)

To be compared with χ_r^2 = 1.97 (A1 Rosenbluth) Number of points: 1539 (256) **Rp = 0.828876 +- 0.00176695 fm** (Rp= 0.832892 +- 0.00573039 fm)

Discussion

Attempt to identify data set(s) increasing the $\boldsymbol{\chi}_{\text{r}}{}^2$

$\mathbf{\hat{v}}$ **Impact of fixing G_F(0)** = 1 in the fit:

* F. Borkowski et al., Nuclear Physics A Vol. 222 (1974) Issue 2: found a « small radius » (0.82 fm), then fixed $G_E(0) = 1$ and got Rp = 0.87 fm

* PRad decided not to fix $G_F(0) = 1 \Rightarrow \infty$ small » radius ; if $G_F(0) = 1$ is fixed $\Rightarrow \infty$ large radius »

* A1 data alone: if $G_E(0) = 1$ is fixed \Leftrightarrow « large radius » ; if not \Leftrightarrow « small radius value.

Fixing $G_F(0) = 1$ results in adding a data point with an infinite precision

Discussion of A1 data

Precision of G_M data?

Computation of Negative Moments based on 2

« Negative moments as the signature of the radial density at small distances » arXiv:2410.13340 [nucl-th] (Oct. 17th, 2024) M. Atoui, M. Hoballah, M. Lassaut, J. Van de Wiele

- \triangleright Robust evaluation of any radial density at small distances usin evaluated **in momentum space.**
- Ø **Valuable insight into the behavior of a given radial density in the vicinity of r=0** ⇔ Strong emphasis to measure FF at large squared-momentum transfers \equiv essenti order moments.
- \triangleright Special attention paid to the regularization scheme directly affet of the density's parametrization.
- Ø Application to non-relativistic study cases: **(***GEn***,***GEp***) magnetic and** *GMp* **form factors**.
- Ø Application to the relativistic Dirac form factor **F1**.

Summary (1/2)

- ü**Novel method** to extract the **moments of the charge density** via an **integral** over the **full experimentally probed momentum range of any G_E data « physical » functional form, which has advantages** compared to the usual **derivative** method:
	- **- does not rely on zero squared-momentum extrapolation**
	- **- uses data in a wide range of** \mathbb{Q}^2 **improving the statistics**
	- **- gives access to moments of any order** (even, odd, negative, non-integer) **[> -3]**

ü Moments of **even positive order formally equal** to those obtained with the **« derivative method »**

 $\sqrt{ }$ **Negative order** moments $[\lambda > -3]$ probe short-range effects, require G_E data at large Q² $\sqrt{2}$ High positive order moments probe large-distance effects, require G_F data at low Q^2 \checkmark **Higher positive order** moments = inputs for atomic spectroscopy corrections

Summary & Perspectives

ü**Application of the integral method:**

.

- * to available G_F data sets (choice of Rosenbluth data and low Q²)
- *** Simultaneaous fit: choice of polynomial ratio parametrisation as the functional form**
- *** Normalisation parameter (ⁱ) associated to each data set**
- *** Extraction of moments considering errors from exp. data (stat. & syst.)**
- ***** = **0.832892 +/- 0.00573039 fm (A1 Ros. data) // 0.828876 +/- 0.00176695 fm (A1 cross section)**
- *** Discrepancies betw. Rp values from ep scattering seems to originate from underestimated syst. err**
- *** Investigation of reason(s) for ^r 2 increase**
- * **Impact of fixing G_F(0)=1 for G_F data parametrisation**

ü **Recent publication presenting method to access any negative order moments [(non-) relativistic ; (GE) F1]**

Summary & Perspectives

ü**Application of the integral method:**

- * to available G_E data sets (choice of Rosenbluth data and low Q²)
- *** Simultaneaous fit: choice of polynomial ratio parametrisation as the functional form**
- *** Normalisation parameter (ⁱ) associated to each data set**
- *** Extraction of moments considering errors from exp. data (stat. & syst.)**
- ***** = **0.832892 +/- 0.00573039 fm (A1 Ros. data) // 0.828876 +/- 0.00176695 fm (A1 cross section)**
- *** Discrepancies betw. Rp values from ep scattering seems to originate from underestimated syst. err**
- *** Investigation of reason(s) for ^r 2 increase**
- * **Impact of fixing G_F(0)=1 for G_F data parametrisation**

ü **Recent publication presenting method to access any negative order moments [(non-) relativistic ; (GE) F1]**

Perspectives

.

- **[◆]** Simultaneous Fit of G_M data ⇒ Moments of the magnetization density
- ^{◆ •} Evaluation of the Zemach moments (convolution of G_F & G_M)

LES MYSTÈRES **DU PROTON**

 $~^{\sim}$ 16 minutes

https://www.youtube.com/watch?v=8iuBwdBxp

ご清聴ありがとう ございました

Thank you for your attention

LEES 2024, Oct. 28 – Nov. 1st, 2024, Sendai

Back-up

LEES 2024, Oct. 28 – Nov. 1st, 2024, Sendai **32**

i normalisation parameter

Chronological overview of the proton radius values from electron scattering experiments

J.-P. Karr et al., Nature Rev. Phys. 2 , 601 (2020)

Framework of lepton proton scattering experiments

No global Lorentz Transform (LT) to the lab frame: 1 LT per $|K^2|$ point

 $|K^2|$ [fm⁻²]= **25,7** x **Q²** [(GeV/c²)²]