

Laboratoire de Physique des 2 Infinis

Spatial Moments (r^{λ}) of the Proton Charge Density

Dominique Marchand

On behalf of: M. Atoui, M. Barbaro, M. Hoballah, C. Kairouz, M. Lassaut, D.M., G. Quéméner, E. Voutier

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 824093

Spatial Moments and the Proton charge radius

 $R_p = \sqrt{\langle r^2 \rangle}$

 $\boldsymbol{R_p}$ related to the moment of order 2 of the radial density ρ

R_p «experimentally» extracted from

(ordinary and muonic) Hydrogen spectroscopy

Lepton (**e** or **µ**) **proton** elastic scattering (indirect measurement)

June 2019 \rightarrow July 2024 D. M., Prof. R. Pohl (Mainz) (22 institutions, 11 countries)

To stimulate a real synergy between all the physicists involved in the world-wide experimental and theoretical effort, from atomic spectroscopy and lepton scattering, in order to investigate / understand persistent discrepancies on the value of the proton charge radius.

International Workshops

June 20-23 », 2022, Sorbonne Université, Paris https://indico.mitp.uni-mainz.de/e/pren2022

June 26-30, 2023, J.G. University & HIM, Mainz https://indico.him.uni-mainz.de/event/172/

Nuclear Radius Extraction Collaboration (NREC), J. Bernauer *et al.* Kick-off meeting, 6-10 mai, 2024, CFNS, Stony Brook University, New-York

LEES 2024, Oct. 28 – Nov. 1st, 2024

Some selected PREN publications

General review / outreach:

News & views

https://www.natureasia.com/ja-jp/ndigest/v17/n2 実験物理学

Application

M. Atoui, M.B. Barbaro, M. Hoballah, C. Keyrouz, M. Lassaut, D. M., G. Quéméner, E. Voutier,
 « Determination of the moments of the proton charge density », Phys. Rev. C 110 (2024) 015207

Motivation

- Novel approach to extract the moments of the charge distribution from electron-proton scattering data: the Integral Method
- Application to proton electric form factor data taking into account statistical & systematics uncertainties
- Conclusions / Perspectives

Proton Radius extracted from electron-proton elastic scattering

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \left[\frac{G_{Ep}^2(Q^2) + \tau G_{Mp}^2(Q^2)}{1 + \tau} + 2\tau \tan^2\left(\frac{\theta}{2}\right)G_{Mp}^2(Q^2)\right]$$

 $\tau \equiv \frac{Q^2}{4M_p^2}$

 G_E and G_M Sachs' electric and magnetic form factors

$$G_{Ep}(Q^2) = 1 - \frac{Q^2}{6} < r_p^2 > + \frac{Q^4}{120} < r_p^4 > + \cdots$$

« Standard method »: proton charge radius (r_p)
 = moment of order 2 of the radial charge density ρ

is extracted from Rosenbluth separation or very low q² data, where GE dominates.

$$R_{p} = \sqrt{\langle r^{2} \rangle} = \sqrt{-6 \frac{dG_{Ep}(Q^{2})}{dQ^{2}}}\Big|_{Q^{2}=0}$$

e

n

« Derivative method »

BUT the Q²=0 limit cannot be reached in lepton scattering

Slope of G_F at $Q^2=0$ ($Q^2 = -q^2$)

D

=> Relying on interpolation (parametrization) of G_E data to extrapolate to $Q^2=0$

Extraction of Spatial Moments through the « Derivative Method »

$$\langle r^{\lambda} \rangle = \int_{\mathbb{R}^3} d^3 \mathbf{r} \, r^{\lambda} \rho_E(\mathbf{r})$$

More generally all **positive even** order moments can be determined based on the « **derivative method** »:

$$< r^{2j} > = (-1)^j \frac{(2j+1)!}{j!} \frac{d^j G_E(k^2)}{d(k^2)^j} \bigg|_{k^2=0}$$

considering

ering
$$\rho_E(\mathbf{r}) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} \mathrm{d}^3 \mathbf{k} \, e^{i\mathbf{k}\cdot\mathbf{r}} G_E(k^2)$$

Inverse of the Fourrier Transform of the Sach's form factor G_E (Valid for non-relativistic description; Breit frame)

All even positive order moments of the radial distribution can be related to zero 4-momentum squared derivatives of the electric form factor and provide complementary information on the charge distribution inside the proton, *e.g.* high order moments describe the tail of the charge distribution.

Issues faced relying on the « derivative method »:

- > Based on the zero 4-momentum squared extrapolation of the $G_E q^2$ dependency
- > Sensitivity to the functional form used for the parametrization (interpolation)
- **>** Sensitivity to the *q*² range used for the interpolation
- **Give only access to positive even moments**

Novel approach: Integral Method

Spatial Moments of the charge density: Integral Method (IM)

The moment of any real order λ can be expressed as an integral over the full momentum space

$$\langle \boldsymbol{r}^{\boldsymbol{\lambda}} \rangle = (r^{\boldsymbol{\lambda}}, \rho_E) = \frac{1}{(2\pi)^3} \int_{\mathbb{R}^3} d^3 \mathbf{k} \, G_E(\mathbf{k}) \int_{\mathbb{R}^3} d^3 r \, r^{\boldsymbol{\lambda}} \, e^{i \boldsymbol{k} \cdot \boldsymbol{r}}$$

Spatial Moments of the charge density: Integral Method (IM)

The moment of any real order λ can be expressed as an integral over the full momentum space

 $g_{\lambda}(\mathbf{k}) = \int d^3 \mathbf{r} \, r^{\lambda} e^{i\mathbf{k}\cdot\mathbf{r}}$ can be treated as a **distribution**

Spatial Moments of the charge density: Integral Method (IM)

The moment of any real order λ can be expressed as an integral over the full momentum space

 $g_{\lambda}(\mathbf{k}) = \int d^3 \mathbf{r} \, r^{\lambda} e^{i\mathbf{k}\cdot\mathbf{r}}$ can be treated as a **distribution**

« Connecting spatial moments and momentum densities », M. Hoballah et al, Phys. Lett. B 808 (2020) 135669

Exponential regularization (IM2)

$$\langle \mathbf{r}^{\lambda} \rangle = \frac{1}{(2\pi)^{3}} \int_{\mathbb{R}^{3}} d^{3}\mathbf{k} \, G_{E}(\mathbf{k}) \, g_{\lambda}(\mathbf{k})$$

$$g_{\lambda}(\mathbf{k}) = \int_{\mathbb{R}^{3}} d^{3}\mathbf{r} \, \mathbf{r}^{\lambda} \, e^{i\mathbf{k}\cdot\mathbf{r}} = \lim_{\epsilon \to 0+} \int d^{3}\mathbf{r} \, r^{\lambda} e^{-\epsilon \mathbf{r}} e^{i\mathbf{k}\cdot\mathbf{r}}$$

$$g_{\lambda}(\mathbf{k}) \equiv \lim_{\epsilon \to 0+} I_{\lambda}(\mathbf{k},\epsilon)$$

$$\text{Standard technique to regularize the Fourier transform of the Coulomb potential}$$

The distribution $g_{\lambda}(\mathbf{k})$ is the weak limit for $\epsilon \to 0$ of a convergent integral $I_{\lambda}(\mathbf{k}, \epsilon)$ which can be evaluated analytically

$$g_{\lambda}(\mathbf{k})$$
 analytical integration $\mathcal{I}_{\lambda}(k,\epsilon) = \frac{4\pi \Gamma(\lambda+2) \sin \left[(\lambda+2)\operatorname{Arctan}(k/\epsilon)\right]}{k(k^2+\epsilon^2)^{\frac{\lambda}{2}+1}}$

$$\langle r^{\lambda} \rangle = \frac{2}{\pi} \Gamma(\lambda+2) \lim_{\epsilon \to 0^+} \int_0^\infty \mathrm{d}k \, G_E(k^2) \, \frac{k \sin\left[(\lambda+2) \operatorname{Arctan}\left(k/\epsilon\right)\right]}{(k^2+\epsilon^2)^{\lambda/2+1}} \quad (\lambda > -3)$$

Exponential regularization (IM2)

$$\langle r^{\lambda} \rangle = \frac{2}{\pi} \Gamma(\lambda+2) \lim_{\epsilon \to 0^{+}} \int_{0}^{\infty} dk \, G_{E}(k^{2}) \, \frac{k \sin\left[(\lambda+2) \operatorname{Arctan}\left(k/\epsilon\right)\right]}{(k^{2}+\epsilon^{2})^{\lambda/2+1}}$$

$$= \frac{1}{\pi} \operatorname{positive integer:} \quad \langle r^{m} \rangle = \frac{2}{\pi} (m+1)! \lim_{\epsilon \to 0^{+}} \epsilon^{m+2} \int_{0}^{\infty} dk \, k \, G_{E}(k^{2}) \frac{\Phi_{m}\left(\frac{k}{\epsilon}\right)}{(k^{2}+\epsilon^{2})^{m+2}} \quad \text{with} \quad \Phi_{m}(x) \equiv \sum_{j=0}^{m+2} \sin\left(\frac{j\pi}{2}\right) {m+2 \choose j} x^{j}$$

$$= \operatorname{For \ even \ } m, \text{ the IM recovers formally the same quantities as the derivative method}$$

Advantages of the IM over the derivative method:

- For $\lambda = m$

- 1. can access **moments of any real order >-3, including odd and negative,** carrying complementary information on the charge distribution inside the proton
- **2. data** over the **full Q² range** is used, **without relying on the zero-momentum extrapolation**

3. takes into account the full experimentally probed momentum region, improving the statistics

- Short-distance behaviour of the charge distribution is encoded in the negative order moments particularly sensitive to the large k²-dependence of GE (k²)
- Long-distance behaviour is encoded in the high positive order moments sensitive to the low k²-dependence.

Truncated Moments

Experimental measurements of the Form Factor do not extend to infinite k^2 :

- But: Integrals are most likely to saturate at a squared four-momentum transfer value well below infinity.
- Hence: Cut-off *Q* replaces the infinite integral boundary : truncated moments.

Q² ~ 1.4 [(GeV/c²)²]

Moment determination from G_E experimental data

• Select G_E from electron scattering experiments	Data				Number	k^2 -ra	
	\mathbf{Set}	Year	Authors	Ref.	of	k_{min}^2	k_{max}^2
> Rosenbluth Separation : Measure σ at a given k^2 for different	Number				data points	$[\mathrm{fm}^{-2}]$	$[\mathrm{fm}^{-2}]$
values of beam energy and scattering angle	1	1962	Lehmann <i>et al.</i>	[19]	1	2.98	2.98
$>$ G _M contribution is strongly suppressed at very low k^2	2	1963	Dudelzak et al.	[20]	4	0.30	2.00
5.51 × 10–3 ≤ k^2 (fm ⁻²) ≤ 226	3	1963	Berkelman $et al.$	[21]	3	25.0	35.0
> 21 data sets $5.51 \times 10 - 3 \le k^2 (\text{fm}^{-2}) \le 226$ $2.15 \times 10^{-4} \le Q^2 [(\text{GeV/c}^2)] \le 8.8$	4	1966	Frèrejacque et al.	[22]	4	0.98	1.76
	5	1966	Chen <i>et al.</i>	[23]	2	30.0	45.0
Fit simultaneously the different datasets using the functional form	6	1966	Janssens <i>et al.</i>	[24]	20	4.00	22.0
	7	1971	Berger et al.	[25]	9	1.00	50.0
$G_E(k) = \eta_i \frac{1 + a_1 k^2}{1 + b_1 k^2 + b_2 k^4 + b_3 k^6}$	8	1973	Bartel et al.	[26]	8	17.2	77.0
	9	1975	Borkowski et al.	[27]	10	0.35	3.15
The same functional behavior is assumed for each dataset	10	1994	Walker <i>et al.</i>	[28]	4	25.7	77.0
> A separate normalization parameter η_i is considered for	11	1994	Andivahis <i>et al.</i>	[29]	8	44.9	226.
each dataset number i	12	2004	Christy <i>et al.</i>	[30]	7	16.7	133.
	13	2005	Qattan et al.	[31]	3	67.8	105.
*A1 Rosenblu	14 14	2014	Bernauer <i>et al.</i>	[10]	77	0.39	14.2
DDad		2019	Xiong $et \ al 1.1 \ GeV$	[11]	33	5.51×10^{-3}	3.96×10^{-1}
PRad	16	2019	Xiong et al 2.1 GeV	[11]	38	1.79×10^{-2}	1.49
ISR		2021	Mihovilovič et al 195 MeV	[32]	6	3.43×10^{-2}	6.99×10^{-2}
		2021	Mihovilovič et al 330 MeV	[32]	11	4.69×10^{-2}	2.00×10^{-1}
		2021	Mihovilovič $et~al.$ - 495 ${\rm MeV}$	[32]	8	1.57×10^{-1}	4.37×10^{-1}

Simultaneous Fit of G_E experimental data

Functional Form: polynomial ratio parametrisation

 $G_E(k^2) = \eta_1 \frac{1 + a_1 k^2}{1 + b_1 k^2 + b_2 k^4 + b_3 k^6}$

	a1 [x 10 ⁻¹ fm ²]	b1 [x 10 ⁻¹ fm ²]	b2 [x 10⁻¹ fm⁴]	b3 [x 10 ⁻³ fm ⁶]
	8.8008	9.9570	1.0285	2.9252
Statistical	0.0054	0.0113	0.0058	0.0666
Systematic	0.0095	0.0019	0.0003	0.0219

Normalization parameters η_i :

Recent experiments (2010-21):

Systematic errors of the fit parameters reflect the experimental data systematics:

- 1. The data are shifted (upwards or downwards the central point) with their respective systematic errors: 2¹⁹ configurations
- 1. For each configuration a fit is performed and parameters are extracted
- 2. Systematics are evaluated from the difference of the parameter value WRT the reference fit

Old Experiments:

Deviations up to 17% (still reasonable at large k^2 where GE gives small contribution to the cross section)

Deviation from unity is smaller than 1%

Evaluation of Moments

Moment Statistical Errors

Procedure:

- Make replicas of parameters (50 000) following the assumption of statistical errors associated to data
- The moments are estimated from each replica
- A dedicated study of the variance of the replicas is performed from which the statistical errors on the moments are obtained

λ	$\langle r^{\lambda} \rangle_Q$	$\langle r^{\lambda} angle$	$\langle r^{2p} \rangle_d$	$\delta\left[\langle r^{\lambda} angle_{Q} ight]$
	$\left[\mathrm{fm}^{\lambda}\right]$	$\left[\mathrm{fm}^{\lambda} ight]$	$[\mathrm{fm}^{\lambda}]$	$\left[\mathrm{fm}^{\lambda} ight]^{*}$
-2	6.5245	8.7226		0.0172
-1	1.9681	2.0906	—	0.0024
1	0.7206	0.7179	—	0.0020
2	0.6937	0.6937	0.6937	0.0094
3	0.8697	0.8701	—	0.0457
4	1.4728	1.4728	1.4728	0.2461
5	3.8139	3.8137	—	1.4822
6	16.405	16.405	16.405	10.058
7	104.64	104.64	—	76.676

Larger statistical errors for high order positive moments (probing the large distance behavior of the charge density): lack of measurements at ultra low k^2

Moment Systematics Errors

Sources of systematic errors:

- 1. Originating from the systematic error that is reported by each considered experiment on *GE*
- 2. Discrepancy between truncated and exact moments
- 3. Bias that could be generated on the fit parameters from the fitting model itself
- 4. Bias induced by the normalisation parameter η_i
- Error coming from the choice of the fitting model (ex: Polynomial ratios, polynomials, Inverse polynomials, Constant Fraction (CF) expansion

						Syste	ematic I	Error	
λ	$\langle r^{\lambda} angle_{Q}$	$\langle r^{\lambda} \rangle$	$\langle r^{2p} \rangle_d$	$\delta\left[\langle r^{\lambda} angle_{Q} ight]$	Dat.	Int.	Fun.	Nor.	Mod.
	$\left[\mathrm{fm}^{\lambda}\right]$	$[\mathrm{fm}^{\lambda}]$	$\left[\mathrm{fm}^{\lambda}\right]$	$[\mathrm{fm}^{\lambda}]$	$\left[\mathrm{fm}^{\lambda} ight]$	$\left[\mathrm{fm}^{\lambda} ight]$	$\left[\mathrm{fm}^{\lambda} ight]$	$[\mathrm{fm}^{\lambda}]$	$\left[\mathrm{fm}^{\lambda} ight]$
-2	6.5245	8.7226		0.0172	0.0106	2.1981	0.0001	0.0095	0.3731
-1	1.9681	2.0906	—	0.0024	0.0019	0.1225	0.0001	0.0029	0.0278
1	0.7206	0.7179	—	0.0020	0.0025	0.0027	0.0001	0.0011	0.0029
2	0.6937	0.6937	0.6937	0.0094	0.0111	0	0.0001	0.0010	0.0116
3	0.8697	0.8701	-	0.0457	0.0494	0.0004	0.0007	0.0013	0.0633
4	1.4728	1.4728	1.4728	0.2461	0.2474	0	0.0065	0.0022	0.3805
5	3.8139	3.8137	—	1.4822	1.4297	0.0002	0.0343	0.0056	2.6276
6	16.405	16.405	16.405	10.058	9.4985	0	0.1871	0.0240	21.531
$\overline{7}$	104.64	104.64	—	76.676	71.727	0.0001	2.8169	0.1528	212.48
Taura						Î			Î
Truncation effects are dominant for Negative order moments								choice of fit fct.	

Fitting model choice is the most significant systematic error in the IM method.

This error is sometimes **omitted in "proton radius puzzle" analyses.**

Using a mathematical function obtained from a physics model is the only way to minimize this error.

Moments and charge distribution

Proton Charge Radius

	Т				Statistic	Systematic Error					
λ		$\langle r^\lambda angle_Q$	$\langle r^\lambda angle$	$\langle r^{2p} angle_d$	$\delta\left[\langle r^{\lambda} angle_{Q} ight]$	$\delta\left[\langle r^{2p} angle_{d} ight]$	Dat.	Int.	Fun.	Nor.	Mod.
×		$\left[\mathrm{fm}^{\lambda} ight]$	$\left[\mathrm{fm}^{\lambda} ight]$	$\left[\mathrm{fm}^{\lambda}\right]$	$\left[\mathrm{fm}^{\lambda}\right]^{1}$	$\left[\mathrm{fm}^{\lambda} ight]^{-}$	$\left[\mathrm{fm}^{\lambda} ight]$				
-2	2	6.5245	8.7226	—	0.0172	—	0.0106	2.1981	0.0001	0.0095	0.3731
-1	L	1.9681	2.0906	—	0.0024	—	0.0019	0.1225	0.0001	0.0029	0.0278
1	L	0.7206	0.7179	—	0.0020	—	0.0025	0.0027	0.0001	0.0011	0.0029
2	2	0.6937	0.6937	0.6937	0.0094	0.0105	0.0111	0	0.0001	0.0010	0.0116
÷	3	0.8697	0.8701	-	0.0457	—	0.0494	0.0004	0.0007	0.0013	0.0633
4	1	1.4728	1.4728	1.4728	0.2461	0.2365	0.2474	0	0.0065	0.0022	0.3805
Ę	5	3.8139	3.8137	_	1.4822	_	1.4297	0.0002	0.0343	0.0056	2.6276
6	3	16.405	16.405	16.405	10.058	10.839	9.4985	0	0.1871	0.0240	21.531
_7	7	104.64	104.64	—	76.676	_	71.727	0.0001	2.8169	0.1528	212.48

 $R_p = \sqrt{\langle r^2 \rangle} = 0.8329 \pm 0.0056(stat) \pm 0.0097(syst)fm$

- consistent with Codata 2018 value 0.8414(19) fm
- within 2σ from μH spectroscopic measurement
- 1% accuracy: remarkable for e-p measurement but still far from atomic measurements precision

Proton Charge Radius

- Data are grouped into 5 time periods, from 1961 to 2021

- For each period we have performed the IM analysis estimating the radius and the systematic errors

	Data set	R_p	$(\delta R_p)_{Sta.}$	$(\delta R_p)_{Sys.}$	3
Time period	range	[fm]	[fm]	[fm]	£ 0.9
1962-1994	1 - 11	0.9081	0.0178	0.1249	۵.۰
1962 - 2005	1 - 13	0.8813	0.0191	0.1044	r
1962 - 2014	1 - 14	0.8837	0.0148	0.0544	
1962-2019	1 - 16	0.8329	0.0057	0.0102	0.85
1962 - 2021	1 - 19	0.8329	0.0056	0.0097	0.00

Up to 2014 the **dominant** source of **systematic** uncertainty is the choice of the **fitting model** (blue band)

With data at very low Q2 (Mainz A1, PRAD, ISR) constraints on the fit model are reinforced and this systematics is strongly reduced: the data systematics becomes dominant (grey band)

Simultaneous Fit of G_E Data: A1 Cross section Data (1360 points)

To be compared with $\chi_r^2 = 1.97$ (A1 Rosenbluth) Number of points: 1539 (256) **Rp = 0.828876 +- 0.00176695 fm** (**Rp= 0.832892 +- 0.00573039 fm**)

Discussion

Attempt to identify data set(s) increasing the χ r²

Comment	N points	χ r ²	Rp [fm]
19 exp. (A1 Rosenbluth	256	1.97	0.832892 +- 0.00573039
19 exp. (A1 cross section)	1539	3.40	0.828876 +- 0.00176695
18 exp. (Not A1)	179	1.56	0.823496 +- 0.00911815
16 exp. (Not A1, nor ISR)	154	1.20	0.821268 +- 0.00922865
 A1 & ISR @ N A1 data very ISR fixed high 	d on A1 \rightarrow bias		

Impact of fixing G_E(0) = 1 in the fit:

* F. Borkowski et al., Nuclear Physics A Vol. 222 (1974) Issue 2:

found a « small radius » (0.82 fm), then fixed $G_E(0) = 1$ and got Rp = 0.87 fm

* PRad decided not to fix $G_E(0) = 1 \Rightarrow \ll$ small \gg radius ; if $G_E(0) = 1$ is fixed $\Rightarrow \ll$ large radius \gg

* A1 data alone: if $G_E(0) = 1$ is fixed \Rightarrow « large radius »; if not \Rightarrow « small radius value.

Fixing $G_E(0) = 1$ results in adding a data point with an infinite precision

Discussion of A1 data

Precision of G_M data?

Computation of Negative Moments based on 2nd regularization method

<u>Atoui</u>, <u>M. Hoballah</u>, <u>M. Lassaut</u>, <u>J. Van de Wiele</u>
 <u>M. Atoui</u>, <u>M. Hoballah</u>, <u>M. Lassaut</u>, <u>J. Van de Wiele</u>

- Robust evaluation of any radial density at small distances using negative-order radial moments evaluated in momentum space.
- ➤ Valuable insight into the behavior of a given radial density in the vicinity of r=0 ⇔ Strong emphasis to measure FF at large squared-momentum transfers = essential domain to determine negative order moments.
- Special attention paid to the regularization scheme directly affetcting the numerical determination of the density's parametrization.
- > Application to non-relativistic study cases: (GE_n, GE_p) magnetic and GMp form factors.
- > Application to the relativistic Dirac form factor F1.

Summary (1/2)

- Novel method to extract the moments of the charge density via an integral over the full experimentally probed momentum range of any G_E data « physical » functional form, which has advantages compared to the usual derivative method:
 - does not rely on zero squared-momentum extrapolation
 - uses data in a wide range of ${\bf Q}^2$ improving the statistics
 - gives access to moments of any order (even, odd, negative, non-integer) [$\lambda > -3$]

✓ Moments of even positive order <u>formally equal</u> to those obtained with the « derivative method »

✓ High positive order moments probe large-distance effects, require G_E data at low Q²
 ✓ Higher positive order moments = inputs for atomic spectroscopy corrections
 ✓ Negative order moments [λ > -3] probe short-range effects, require G_E data at large Q²

Summary & Perspectives

✓ Application of the integral method:

- * to available G_E data sets (choice of Rosenbluth data and low Q²)
- * Simultaneaous fit: choice of polynomial ratio parametrisation as the functional form
- * Normalisation parameter (η_i) associated to each data set
- * Extraction of moments considering errors from exp. data (stat. & syst.)
- * Rp = 0.832892 +/- 0.00573039 fm (A1 Ros. data) // 0.828876 +/- 0.00176695 fm (A1 cross section)
- * Discrepancies betw. Rp values from ep scattering seems to originate from underestimated syst. err
- * Investigation of reason(s) for χ_r^2 increase
- * Impact of fixing $G_E(0)=1$ for G_E data parametrisation

✓ Recent publication presenting method to access any negative order moments [(non-) relativistic ; (GE) F1]

Summary & Perspectives

✓ Application of the integral method:

- * to available G_E data sets (choice of Rosenbluth data and low Q²)
- * Simultaneaous fit: choice of polynomial ratio parametrisation as the functional form
- * Normalisation parameter (η_i) associated to each data set
- * Extraction of moments considering errors from exp. data (stat. & syst.)
- * Rp = 0.832892 +/- 0.00573039 fm (A1 Ros. data) // 0.828876 +/- 0.00176695 fm (A1 cross section)
- * Discrepancies betw. Rp values from ep scattering seems to originate from underestimated syst. err
- * Investigation of reason(s) for χ_r^2 increase
- * Impact of fixing $G_E(0)=1$ for G_E data parametrisation

✓ Recent publication presenting method to access any negative order moments [(non-) relativistic ; (GE) F1]

Perspectives

- Simultaneous Fit of G_M data \Rightarrow Moments of the magnetization density
- **\therefore** Evaluation of the Zemach moments (convolution of $G_E \& G_M$)

LES MYSTÈRES DU PROTON

~ 16 minutes

https://www.youtube.com/watch?v=8iuBwdBxp3M

Subtitles in English should be available shortly

ご清聴ありがとう ございました

Thank you for your attention

LEES 2024, Oct. 28 – Nov. 1st, 2024, Sendai

Back-up

LEES 2024, Oct. 28 – Nov. 1st, 2024, Sendai

η_i normalisation parameter

Data Set	Ref.	m.	$(\delta\eta_i)_{Sta.}$	$(\delta\eta_i)_{Sys.}$
Number		η_i	$(\times 10^{-2})$	$(\times 10^{-2})$
1	[19]	0.993	3.020	9.922
2	[20]	0.982	0.505	0.752
3	[21]	2.441	15.87	12.20
4	[22]	0.991	0.917	0.208
5	[23]	0.922	30.43	4.612
6	[24]	1.004	1.132	0.803
7	[25]	1.001	1.333	2.001
8	[26]	1.025	4.490	1.077
9	[27]	0.981	0.254	1.766
10	[28]	1.170	4.902	0.469
11	[29]	0.972	2.144	6.812
12	[30]	1.042	3.513	0.506
13	[31]	1.072	3.509	0.584
14	[10]	0.991	0.083	0.993
15	[11]	1.000	0.022	0.215
16	[11]	0.998	0.018	0.119
17	[32]	1.001	0.113	0.370
18	[32]	1.000	0.097	0.365
19	[32]	0.998	0.066	0.442

Chronological overview of the proton radius values from electron scattering experiments

J.-P. Karr et al., Nature Rev. Phys. 2, 601 (2020)

Framework of lepton proton scattering experiments

No global Lorentz Transform (LT) to the lab frame: 1 LT per | K² | point

 $|K^{2}|$ [fm⁻²]= 25,7 x Q² [(GeV/c²)²]