Measurement of the neutron distribution radius in ²⁰⁸Pb by low-energy electron scattering

R.Danjo, Research Center for Accelerator and Radioisotope Science (RARiS), Tohoku University, Japan for the ULQ2 collaboration

Physics motivation	LEEP(Low Energy Electron Scattering for ²⁰⁸ Pb
 Nucleus Proton + Neutron Proton and neutron distribution are the fundamental quantities of nuclear structures. Proton distribution → well known by electron elastic scattering Neutron distribution → not well known Electron elastic scattering (neutron charge is zero, not considered) Hadron scattering (Model dependence) Parity-violating electron scattering (Measure A_{PV}~10⁶, very difficult) New method shows Possibility of accessing the neutron information through electron elastic scattering^[1] 	 Why low-q? The cross section is very large. Why ²⁰⁸Pb? The nuclear charge density distribution is well known. It is a doubly magic nucleus. There are many theoretical models. Method 1: measure R_n from the cross section ratio We use DWBA instead of PWBA, and directly relate the cross section ratio and the neutron distribution radius. The cross section ratio will be measured with an accuracy of 0.1%
Nuclear charge density and n th moment	to extract the neutron distribution radius with an accuracy of less than 1%.
<u>Nuclear charge density distribution consists</u>	Cross section vs $< R_n^2 > \text{ of }^{208}\text{Pb}$

neutron

of the proton and the neutron contributions. Theoretically the neutron contribution is known to be about 1%.

From the 2nd moment

- The 2nd moment is the square of nuclear charge radius.
- The 2nd moment is measured not only for stable nuclei but also for unstable nuclei • The neutron distribution radius is inaccessible.

 $\langle r_c^2 \rangle \equiv \int r^2 \rho_c(r) \mathrm{d}^3 r$

 $= e_p < R_p^2 > + < r_p^2 > + e_n < R_n^2 > + \frac{N}{7} < r_n^2 > + \text{rel. corr.}$

From the 4th moment

• It is possible to obtain the neutron distribution from the 4th moment.

 $\langle r_c^4 \rangle \equiv \int r^4 \rho_c(r) \mathrm{d}^3 r$ $= e_p < R_p^4 > + \frac{10}{3} < R_p^2 > < r_p^2 > + e_n < R_n^4 > + \frac{10}{3} < R_n^2 > < r_n^2 > \frac{N}{7} + \text{rel. corr.}$

Neutron distribution radius of ²⁰⁸Pb from 4th moment within RMF

• The figure below plots $< r_c^4 >$ vs $< R_n^2 >$ obtained from relativistic mean field models. • 11 models are fitted as a straight line.

 $(\theta)_{0}^{0}$ Goal accuracy ~0.1% **Experimental value** 6.15 32 32.5 33 $< R_n^2 > [fm^2]$ Method 2: measure R_n from the 4th moment W assume that the cross section can be expressed including distortion effect f(q) based on PWBA formula. $\left(\frac{d\sigma}{d\Omega}\right)_{\exp} = f_{\exp}(q) \left(\frac{d\sigma}{d\Omega}\right)_{\operatorname{Mott}} |F(q)|^2, \ \left(\frac{d\sigma}{d\Omega}\right)_{\operatorname{mode}l} = f_{\operatorname{mode}l}(q) \left(\frac{d\sigma}{d\Omega}\right)_{\operatorname{Mott}} |F(q)|^2$ f(q) are no difference between some distributions, even if 2PF, at low-q. $f_{\exp}(q) \approx f(q) \approx f_{\text{model}}(q) \ (f_{\exp}(q): \text{SOG, FB}, f_{\text{model}}(q): 2\text{PF})$ • We calculate f(q) using 2PF and measure the cross section. Then we can get the form factor F(q) and the 4th moment. (cf. Methods to obtain 4th moment Low momentum transfer)

Reference

^[1] H. Kurasawa and T. Suzuki, Prog. Theor. Exp. Phys. 2019, 113D01(2019)

- Electron scattering can determine $\langle R_n^2 \rangle$ from $\langle r_c^4 \rangle$.
- $< r_c^4 >$ can be measured not only from a wide-q range but also at low-q. This is a possible application for unstable nuclei.
- We are currently studying the relationship between the cross section ratio and $\langle R_n^2 \rangle$ using ²⁰⁸Pb target. (LEEP exp.)
- LEEP exp. needs ~0.1% cross section ratio accuracy to extract the $\langle R_n^2 \rangle$ with an accuracy of less than 1%. (Stay tuned to see the result!!)