ポジトロニウム消失事象を用いた CHSH不等式の破れの検証

電子光理学研究センターB4 佐々木舜世、山内豊大、吉本昂生

・イントロダクション

- ・原理
- ・方法
- ・結果
- ・考察
- ・結論

イントロダクション

量子力学は根本的な理論か

量子力学によると、観測する前に物理量は確定しておらず、その値は確率的にしか予言できない -> 物理量は**事前に決定しているのではないか?**

<局所実在論> 局所性…情報は光速を越えて伝達しない 実在性…観測する前から物理量は確定している=「隠れた変数」(未知の決定論的理論)の存在

However ...,

観測する前に存在しているかを確かめる方法??

局所実在性が正しいならば満たされるべき不等式

CHSH不等式 … Bell不等式を簡略化したもの

J. S. Bell

本実験の目的
<-2 ≤ S ≤ 2
(S = <
$$\alpha_1\beta_3$$
 > + < $\alpha_2\beta_3$ > - < $\alpha_1\beta_4$ > + < $\alpha_2\beta_4$ >)

実在論を仮定しない量子力学で計算すると、これを破りうる: $|S| = 2\sqrt{2} > 2$

実際に、実験で不等式が破られていることが確認されている (Aspect, Grangier and Roger 1982[1])

本実験の目的: CHSH不等式の破れを実験的に確かめて隠れた変数を 否定し、量子力学の正当性を確認する

※京大のP1・P2実験[2]を参考

量子力学におけるCHSH不等式の破れ

CHSH不等式と同じセットアップ

測定系が相対的に¢傾いているときのもつれ対の波動関数は | $\psi > = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$ = $\frac{i}{\sqrt{2}} (|yx > - |xy >)$ = $\frac{i}{\sqrt{2}} (-|xx' > sin\phi - |xy' > cos\phi + |yx' > cos\phi - |yy' > sin\phi)$

 $\begin{aligned} & \& \neg \tau \\ & < \alpha\beta > = < \psi |\alpha\beta|\psi > \\ & = \frac{1}{2}(\sin^2 \varphi - \cos^2 \varphi - \cos^2 \varphi + \sin^2 \varphi) \\ & = -\cos 2\varphi \end{aligned}$

$$\alpha_1 \geq \alpha_2, \beta_3, \beta_4$$
のなす角がそれぞれ $\frac{\pi}{4}, \frac{\pi}{8}, \frac{3}{8}\pi$ のとき、
 $S = <\alpha_1\beta_3 > + <\alpha_2\beta_3 > - <\alpha_1\beta_4 > + <\alpha_2\beta_4 >$
 $= -\cos^2\left(\frac{\pi}{8}\right) - \cos^2\left(\frac{\pi}{8}\right) + \cos^2\left(\frac{3}{8}\pi\right) - \cos^2\left(\frac{\pi}{8}\right) = -2\sqrt{2} < -2$ CHSH不等式の破れ

 $|x \rangle = |x' \rangle \cos\varphi - |y' \rangle \sin\varphi$ $|y \rangle = |x' \rangle \sin\varphi + |y' \rangle \cos\varphi$

実験の方針

量子力学: $< \alpha\beta > = -\cos 2\phi \rightarrow < \alpha\beta > = -\kappa \cos 2\phi$ と仮定

量子力学が正しい ->
$$\kappa = 1$$

隠れた変数が正しい -> CHSH不等式を満たさなければならないので、 $\kappa \leq \frac{1}{\sqrt{2}}$ が要請される

-> 実験によって **кの値を調べる**

・もつれ対 -> Na22を使用

オルソポジトロニウム

 β_3

- ・どうやってスピン(偏光)を調べるか
- → 511keVのγは波長が短く(~pm)直接偏光を調べるのは困難なので、代わりに散乱断面積の 偏光依存性(Klein – 仁科の式)を利用する:

$$\frac{d\sigma}{d\Omega} = \frac{1}{2} r_e^2 (\gamma - 2\sin^2\theta\cos^2\eta)$$

 r_e 古典電子半径 γ $\gamma = \frac{k_0}{k} + \frac{k}{k_0}$ (k_0 : 入射 γ の波数、k: 散乱 γ の波数)

- θ : 散乱角
- η:偏光面と散乱面のなす角

観測量への落とし込み

- ・それぞれの重ね合わせ状態をとる確率を求める
 - ① 確率の規格化条件:

 $p_{++} + p_{+-} + p_{-+} + p_{--} = 1$

- A、Bの測定系の二次元回転対称性より等しい
- A、Bの入れ替え対称性より等しい
- 2 期待值:

 $<\alpha\beta>=+1\cdot p_{++}+(-1)\cdot p_{+-}+(-1)\cdot p_{-+}+(+1)\cdot p_{--}=2p_{++}-2p_{+-}=-\kappa cos2\phi$

①、②を解いて、下表のように整理できる:

Р	$\beta = +1$	$\beta = -1$
$\alpha = +1$	$\frac{1 - \kappa \cos 2\phi}{4}$	$\frac{1 + \kappa \cos 2\phi}{4}$
$\alpha = -1$	$\frac{1 + \kappa \cos 2\phi}{4}$	$\frac{1 - \kappa \cos 2\phi}{4}$

 $-> \qquad 2p_{++} + 2p_{+-} = 1$

観測量への落とし込み

測定系が ϕ 傾いた二つの検出器における同時検出確率 $P(\phi)$ を考える($\theta = 90^{\circ}$ とする):

 $P(\varphi) = p_{++}\sigma_{+}\sigma_{+} + p_{+-}\sigma_{+}\sigma_{-} + p_{-+}\sigma_{-}\sigma_{+} + p_{--}\sigma_{-}\sigma_{-} \propto (\gamma - 1)^{2} - \kappa cos 2\varphi$

 $\gamma = \frac{k_0}{k} + \frac{k}{k_0} = \frac{5}{2}$

実験で得られる同時イベント数 $N(\varphi) = A - Bcos2\varphi$ と比較して、 $\kappa = \frac{B}{A}(\gamma - 1)^2 = \frac{9}{4}\frac{B}{A}$

測定方法

BSO 1×1×1cm Plastic 5×5×5cm

測定の詳細

- ・本測定の測定期間
- -> 2024/3の約3週間にわたって測定。
- ・測定点、測定時間
- -> ¢は30度刻みで-30°~120°まで、各点あたり~24時間測定し、結果は一時間あたりに規格化して 解析。
- ・解析方法
- -> 4coincidenceの下で得られた信号のうち、BSOとplaの信号から次のようなカットを行った。

2つの2oの範囲のイベント数Nを BSOの有効イベント数として計測する。

4 coinciのplaの生信号^{30°}

Na22のsingle coincidenceの信号

Cs137のsingle coincidenceの信号

4coincidenceによるコンプトン散乱の測定

結果-30°

結果90°

-30°

 0°

角度ごとの有効イベント

φ	event数	有効イベント数	1時間あたりのイベント数
-30°	116 (24h)	84	3.5
0°	99 (20h)	68	3.4
30°	188 (24h)	114	4.75
60°	159 (16h)	113	7.06
90°	240 (20h)	192	9.6
120 °	195 (20b)	151	6.29

測定結果のフィッティング

 $f(x) = a(1 - b\cos 2(x - c))$ の関数形でフィッティング

Fitting parameter $a = 5.72 \pm 0.288$ $b = 0.497 \pm 0.0663$ $c = -0.12 \pm 0.065$

$$\Rightarrow \kappa = 1.12 \pm 0.149(13.3\%)$$

シンチレータの大きさによる角度誤差(**Φ**方向)

BSO: 1cm 距離: 5cm なので $\Delta \phi = \operatorname{atan}\left(\frac{1}{5}\right) \sim 11.3$ [°]

event数への影響の見積もり(Φ 方向)

本来観測されるはずの分布f(x), 測定した角度を φ ,誤差範囲を $\Delta \varphi$ として

$$N = \frac{f(\varphi) \times 2\Delta\varphi}{\int_{\varphi-\Delta\varphi}^{\varphi+\Delta\varphi} f(x)dx} \times N_{exp}$$

例として、この操作で 3.40 → 3.34 (φ = 0°) 9.60 → 9.67 (φ = 90°) event/hour 角度の広がりを考慮したfitting (Φ方向)

シンチレータの大きさによる角度誤差 (θ 方向)

シンチレータの大きさにより 散乱角(θ)方向の広がりがある

$$2\varphi = 180^{\circ} \mathcal{O} \geq \mathfrak{F}$$

 $\theta_1 = \theta - \Delta \theta$
 $\theta_2 = \theta + \Delta \theta$

シンチレータの大きさによる角度誤差(θ 方向)

同時計測確率
$$P(\varphi, \theta_1, \theta_2)$$
は
 $P(\varphi, \theta_1, \theta_2) = (\gamma_1 - \sin^2 \theta_1)(\gamma_2 - \sin^2 \theta_2) - \kappa \sin^2 \theta_1 \sin^2 \theta_2 \cos 2\varphi$
 $\varphi = 0^\circ, \varphi = 180^\circ \mathcal{E} \times \pi \mathcal{E}$

 $\frac{B}{A} = \frac{4}{9} \cdot \kappa$ と比較して、 $\kappa \sim 1.034 \cdot \kappa_{exp}$ ($\varphi = 0^{\circ}$), $\kappa \sim 1.030 \cdot \kappa_{exp}$ ($\varphi = 180^{\circ}$)となる つまり θ の誤差を考慮すると κ の値は約1.03倍される 角度誤差の影響まとめ

φ方向の広がり κ = 1.12 ± 0.149(13.3%) → 1.14 ± 0.128(11.3%)

heta方向の広がり

 $\kappa \sim 1.03 \cdot \kappa_{exp}$

よって

 $\kappa = 1.17 \pm 0.132(11.3\%)$

乱数を用いて簡単なシミュレーションを行い、 「90°でのイベント数」と「得られるκの値」の関係をみると

結論

・ θ 、 ϕ の補正、cos curve に位相方向の自由度を加えて、最終的な κ の値は

$\kappa = 1.17 \pm 0.13$

大西さん、木村さん、堀田さんにはたくさんアドバイスいただきました、ありがとうございました。

[1]

Aspect et al., Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment, 1982 (<u>https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.49.1804</u>)

[2]

2022年P1実験(<u>https://www-he.scphys.kyoto-u.ac.jp/gakubu/P1/P1-</u> <u>22/FY22_Bell_inequality_report.pdf</u>),

2018年P1実験(<u>https://www-he.scphys.kyoto-u.ac.jp/gakubu/P1/P1-</u> <u>18/FY18_Bell_inequality_report.pdf</u>),

2013年P2実験(https://www-he.scphys.kyoto-u.ac.jp/member/nanjo/P2/epr.pdf)

実験原理の詳細な説明

 $P(\varphi) = p_{++}\sigma_{+}\sigma_{+} + p_{+-}\sigma_{+}\sigma_{-} + p_{-+}\sigma_{-}\sigma_{+} + p_{--}\sigma_{-}\sigma_{-} \propto (\gamma - 1)^{2} - \kappa \cos 2\varphi$

 $\frac{d\sigma}{d\Omega} = \frac{1}{2} r_e^2 (\gamma - 2\sin^2\theta\cos^2\eta) \qquad \qquad x \ (m \ H \ -> \eta = 0 \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \sigma_+ \propto \gamma - 2) \\ y \ (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \eta = \frac{\pi}{2} \ taltation to (m \ H \ -> \eta = \frac{\pi}{2} \ taltation taltation to (m \ H \ -> \eta = \frac{\pi}{2} \ taltati$

 $P(\varphi) = p_{++}\sigma_{+}\sigma_{+} + p_{+-}\sigma_{+}\sigma_{-} + p_{-+}\sigma_{-}\sigma_{-}$ $\propto \frac{1-\kappa\cos 2\varphi}{4}(\gamma-2)^{2} + \frac{1+\kappa\cos 2\varphi}{4}(\gamma-2)\gamma + \frac{1+\kappa\cos 2\varphi}{4}\gamma(\gamma-2) + \frac{1-\kappa\cos 2\varphi}{4}\gamma^{2} = (\gamma-1)^{2} - \kappa\cos 2\varphi$