Multi-meson photoproduction on the proton in BGOegg Phase-II experiment

2024/11/20 HASHIMOTO, Toshikazu RCNP, Osaka University LEPS2/BGOegg Collaboration

- Physics motivation
- LEPS2/BGOegg experiment(Phase-I / Phase-II)
- Phase-II experimental status and plan
- Multi-meson photoproduction on the proton

Physics motivation

Meson photoproduction experiment

• Spectroscopy of light baryon resonance

- single meson photoproduction $\gamma p \rightarrow \pi^0 p / \eta p / \omega p / \eta' p$ - double meson photoproduction $\gamma p \rightarrow \pi^0 \pi^0 p / \pi^0 \eta p / \pi^0 \omega p / \pi^0 \eta' p / \eta \eta p$

• Search for evidence of exotic hadron structures

- photoproduction of scaler mesons $\gamma p \rightarrow f_0(980)p / a_0(980)p$

• Study of hadron properties in nuclear medium

- Search for η' mesic nuclei
- Direct measurement of in-medium η' mass spectrum

Physics motivation

Achievements in Phase-I experiment

• Spectroscopy of light baryon resonance

- single meson photoproduction $\gamma p \rightarrow \pi^0 p / \eta p / \omega p / \eta' p$ - double meson photoproduction $\gamma p \rightarrow \pi^0 \pi^0 p / \pi^0 \eta p / \pi^0 \omega p / \pi^0 \eta' p / \eta \eta p$

PRC 100, 055202(2019) PRC 102, 025201(2020) PRC 106, 035201(2022)

• Search for evidence of exotic hadron structures - photoproduction of scaler mesons $\gamma p \rightarrow f_0(980)p / a_0(980)p$

PRC 107, L042201(2023)

PRL 124, 202501(2020)

Study of hadron properties in nuclear medium

- Search for η' mesic nuclei
- Direct measurement of in-medium η' mass spectrum

A hint of η' mass shift in carbon nuclei -> Upgrade experiment(Phase-II) In detail, Matsumura-san's talk at tomorrow's plenary session.

SPring-8/LEPS2 beamline

SPring-8 (Electron storage ring: 8 GeV and 100 mA)

Backward compton scattering with 355nm UV laser and 8 GeV electron Beam tagging is performed by detecting recoil electrons.

 E_{γ} 1.3~2.4 GeV (*W* 1.8~2.3 GeV@proton tagert) beam intensity ~2 Mcps

RARiS workshop C042, HASHIMOTO Toshikazu

BGOegg: EM calorimeter consisting of BGO crystals $\sigma_E = 1.3\%$ @ 1 GeV, covering $\theta = 24^{\circ} -144^{\circ}$ IPS: Plastic scintillator bars for charge identification DC: Charged particle tracker $\sigma_{\text{position}} = 300 \ \mu\text{m}$, covering $\theta < 21^{\circ}$ RPC: Gas chamber for TOF measurement $\sigma_{\text{TOF}} = 80 \ \text{ps} \Rightarrow \sigma_p = 1\%$ @ 2 GeV proton, covering $\theta < 6.8^{\circ}$

Upgrade to Phase-II

We changed the forward detectors to a new electromagnetic calorimeter.
Phase-I
Phase-II
Phase-II

 γ acceptance: 24° < θ < 144°

Forward γ can be detected.

-> It is easier to identify multi-meson photoproduction reactions.

ex) Muliti-meson $BG(\gamma p \rightarrow \pi^0 \pi^0 p) \sim 1/8$ in η' analysis. Target: Cu, Increase beam intensity (5Mcps). 28σ significance in a few months. RARIS workshop C042, HASHIMOTO Toshikazu

Phase-II status and future plane

- Detector upgrade in progress from FY2021.
- DAQ preparation and pilot run were done in FY2023.
- We took physics data on copper target(7.5 mm) from May to July 2024.
 Obtained 5 G events, equivalent to about 80% of the phase-I carbon target data.
 Calibration in progress.
- Future plan
 Copper target: additional data acquisition
 Liquid hydrogen target: The target system is not yet ready...
- Second stage plan Improve forward acceptance. 6° < θ < 144° Additional 150 PWO crystals Already bought The beam test was done on Nov.

Multi-meson photoproduction on the proton

- In the higher energy regions, multi-meson final states are of increasing importance in photoproduction experiments.
- The charged channel has large non-resonant contributions including $\Delta \pi$ production (Kroll-Ruderman term)

Sequential decay for $\gamma p \rightarrow \pi^0 \eta p$ reaction

- Access to baryon resonances at higher energies.
- Access to the internal structure of baryon resonances. partial wave analysis, decay branching ratio, di-quark information??

Eur. Phys. J. A (2014) 50 74

- Photon beam asymmetries Σ , I^s , and I^c were measured, and the partial wave analysis was done.
- They determined the branching ratio of many resonances for their decays into $\pi^0 \eta p$ via several intermediate states.
- A parity doublet ($\Delta(1920) 3/2^+$ and $\Delta(1940) 3/2^-$), which is not expected in quark models, was observed.

 $\gamma p \rightarrow \pi^0 \eta p$ @CBELSA/TAPS

Resonance	πN	$N(1535)\pi$	$\Delta(1232)\eta$
$N(1710)1/2^+$	$5\pm3\%$	$15\pm6\%$	_
$N(1880)1/2^+$	$6\pm 3\%$	$8\pm4\%$	_
$N(1900)3/2^+$	$3\pm3\%$	$7\pm3\%$	_
$N(2100)1/2^+$	$3\pm2\%$	$22\pm8\%$	—
$N(2120)3/2^{-}$	$5\pm 3\%$	$15\pm8\%$	—

For all N^* s, the decay branching ratios to $N(1535)\pi$ is larger than that to πN .

Resonance	πN	$N(1535)\pi$	$\Delta(1232)\eta$
$\Delta(1700)3/2^{-}$	$22\pm4\%$	$1\pm0.5\%$	$5\pm2\%$
$\Delta(1900)1/2^{-}$	$7\pm2\%$	—	$1\pm1\%$
$\Delta(1905)5/2^{+}$	$13\pm2\%$	$\leq 1\%$	$4\pm2\%$
$\Delta(1910)1/2^{+}$	$12\pm 3\%$	$5\pm3\%$	$9\pm4\%$
$\Delta(1920)3/2^{+}$	$8\pm4\%$	$\leq 2\%$	$11\pm6\%$
$\Delta(1940)3/2^{-}$	$2\pm1\%$	$8\pm6\%$	$10\pm6\%$
$\Delta(1950)7/2^{+}$	$46 \pm 2\%$		$\leq 1\%$

For some Δ^* s, the decay branching ratios to $N(1535)\pi$ and $\Delta(1232)\eta$ is smaller/larger than that to πN .

$$\gamma p \to \pi^0 \eta' p$$

 $N(1895) 1/2^{-} \pi^{0} (W_{thr}=2.03 \text{ GeV})$ $\Delta(1232) 3/2^{+} \eta' (W_{thr}=2.19 \text{ GeV})$ $a_{0}(1450) p (W_{thr}=2.39 \text{ GeV})$

No data exist.

Search for high-mass resonances, especially around W = 2.3 GeV

Rough yield estimation

 $\sigma \propto \text{PS} \times f^2$

Rough estimation of $\sigma(\gamma p \rightarrow \pi^0 \eta' p)$ from $\sigma(\gamma p \rightarrow \pi^0 \eta p)$

$$\sim \frac{\sigma(\gamma p \to \eta' p)}{\sigma(\gamma p \to \eta p)} \cong \frac{PS(\gamma p \to \eta' p)}{PS(\gamma p \to \eta p)}$$

$$\frac{\mathrm{PS}(\gamma p \to \pi^0 \eta' p)}{\mathrm{PS}(\gamma p \to \pi^0 \eta p)} \sim \frac{1}{3}$$

$$\sigma(\gamma p \to \pi^0 \eta' p)$$

$$\cong \frac{1}{3} \sigma(\gamma p \to \pi^0 \eta p) \cong 1 \,\mu b$$

$$2 \times 10^5 \text{ events } @\text{LEPS2}$$

assuming 5 MHz beam, 50 days Considering acceptance and decay branching ratio, -> 2×10^4 events@Phase-II <1000 events@Phase-I

Summary

- BGOegg experiment has studied the following: spectroscopy of light baryon resonances exotic hadron structures hadron properties in nuclear medium
- Phase-II experiment improved γ -acceptance to forward, thereby reducing background in single-meson reactions and allowing measurement of multimeson reactions.
- Phase-II experiment has started this year for in-medium η' mass study. We plan to take data on liquid hydrogen target in the future.
- Multi-meson photoproduction reactions increase importance in the higher energy regions.
 We are interested in γp → π⁰η'p reaction.