H-DIBARYON SEARCH

J-PARC E42 and Future Opportunities with HypTPC

Jung Keun Ahn (Korea University)

Exotic Hadrons

Multiquark States

- An exotic hadron is a state that cannot be classified in terms of standard qqq or qq configurations according to SU_f(3) irreducible representations: multiquark states (qqqq, qqqqq, 6q, and so on).
- The existence of multiquark hadrons is now firmly established in the meson sector: tetraquark states such as XYZ states.
- Recently, the LHCb collaboration claims on the observation of three hidden-charm pentaquark *P_c* states.
- The observation of such many multiquark candidates poses a question on the dripline of further multiquark states: hexaquark state.

The Most Promising Candidate in the Strange Sector

H-dibaryon

• : The H-Dibaryon (J = 0, I = 0) is a stable SU(3)_f singlet hexaquark state consisting of *uuddss* quarks due to QCD color magnetic force.

H is named after Hexa-quark states.

VOLUME 38, NUMBER 5 PHYSI

PHYSICAL REVIEW LETTERS

31 JANUARY 1977

Perhaps a Stable Dihyperon*

R. L. Jaffe†

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305, and Department of Physics and Laboratory of Nuclear Science, 1 Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 1 November 1976)

In the quark bag model, the same gluon-exchange forces which make the proton lighter than the $\Delta(1236)$ bind six quarks to form a stable, flavor-singlet (with strangeness of -2) $J^P = 0^+$ dihyperon (H) at 2150 MeV. Another isosinglet dihyperon (H+) with $J^P = 1^+$ at 2335 MeV should appear as a bump in $\Lambda\Lambda$ invariant-mass plots. Production and decay systematics of the H are discussed.

QCD Color Magnetic Interaction

Effective Hamiltonian

 The QCD color magnetic interaction can be summarized by an effective Hamiltonian acting on the quarks' spin and color indices;

$$\mathcal{H}_{\text{eff}} \propto -\sum_{i \neq j} \vec{\lambda}_i \cdot \vec{\lambda}_j \vec{\sigma}_i \cdot \vec{\sigma}_j$$

 \bigcirc For N quarks,

$$\mathscr{H}_{\text{eff}} \propto -\sum_{i\neq j}^{N} \{\vec{\lambda}\vec{\sigma}\}_i \cdot \{\vec{\lambda}\vec{\sigma}\}_j = 8N - \frac{1}{2}C_6^N + \frac{4}{3}S_N(S_N+1).$$

For 6 quarks, the color-spin interaction energies are

$$\langle \mathcal{H}_{\text{eff}} \rangle_1 = -24, \quad \langle \mathcal{H}_{\text{eff}} \rangle_8 = -28/3, \quad \langle \mathcal{H}_{\text{eff}} \rangle_{\overline{10}} = +8/3, \quad \langle \mathcal{H}_{\text{eff}} \rangle_{27} = +3,$$

Dibaryon Multiplets in $SU(3)_f$

Dibaryon Multiplets in $SU(3)_f$

Brief Summary of the History of H-Dibaryon Searches

H-Dibaryon Search at J-PARC : E42

The existence of the H-dibaryon still awaits definitive experimental confirmation or exclusion.

- \bigcirc Weakly-bound : $H \rightarrow \Lambda p \pi^-$
- Virtual state : $\Lambda\Lambda$ or Ξ^-p threshold effect
- Resonance : Breit-Wigner peak in $\Lambda\Lambda$ and Ξ^-p masses

J-PARC-E42 EXPERIMENT

- 1. in $\Lambda p\pi^-$, $\Lambda\Lambda$ and Ξ^-p channels
- **2**. by tagging the S = -2 system production
- 3. via (K^-, K^+) reactions at 1.8 GeV/*c* with a diamond target
- 4. with Hyperon Spectrometer : 1 MeV $\Lambda\Lambda$ mass resolution

E42 (H-Dibaryon Search) Run Summary

E42 completed the physics run from May 11 through June 29, 2021, successfully operating the new superconducting hyperon spectrometer (SHS).

The J-PARC E42 Collaboration

J.K. Ahn (*spokesperson*), S.H. Kim, S.W. Choi, W.S. Jung, B.M. Kang, J.W. Lee, S.B. Yang, M. Fujita, S. Hasegawa, Y. Ichikawa (*co-spokesperson*), K. Imai, H. Sako, S. Sato, K. Tanida, T. Takahashi, M. Ukai, T. Yamamoto, S. Hayakawa, Y. Ishikawa, S. Kajikawa, K. Kamada, T. Kitaoka, T. Morino, F. Oura, T. Sakao, M. Saito, H. Tamura, S. Wada, T. Harada, S.H. Hwang, K. Hicks

. Ph.D. candidates and core members

Korea Univ / JAEA / KEK / Tohoku Univ / Kyoto Univ/ KRISS / Ohio Univ

E42 Detector for the *H*-Dibaryon Search

고려대학교

KOREA UNIVERSITY

 (K^-, K^+) reaction events are tagged by the K1.8 beam line and the KURAMA spectrometers.

Decays of the S = -2 system are reconstructed using the Superconducting Hyperon Spectrometer.

Superconducting Hyperon Spectrometer Magnet

○ The 1-T SHS magnet operated stably, 30 cm apart from the 0.7-T KURAMA magnet.

Hyperon Time Projection Chamber (HypTPC)

- The HypTPC operation was relatively stable except two events stopping the E42 run shortly.
- \bigcirc Event display for 0.4 GeV/*c* π^+ beam tracks accumulated in the calibration run.

E42 Operation Summary

- The accumulated beam yield is 175G K^- , which is approximately 60% of the level we intended to achieve.
- The *K*[−] beam intensity was gradually increased and finally was set to 550 k/spill for the stable HypTPC operation^{*a*}

^{*a*}We operated the HypTPC below the 6/h spark rate limit, which was sufficiently low for safe GEM operation. We operated the HypTPC without the GEM damage during the E42 run.

${}^{12}C(K^-, K^+)$ Reaction Event

 Reconstructed K⁻ beam and outgoing K⁺ tracks share the vertex at the diamond target position.

Two Vs are seen in the HypTPC and four decay particles hit the HTOF.

Reconstructed Mass and K⁺ Momentum

Missing Mass Spectra for (K^-, K^+) Reactions

- Ξ^- and $\Xi(1535)^-$ peaks are identified in the missing-mass spectrum for (K^-, K^+) reactions with a polyethylene target (left).
- High mass region is enhanced in the missing mass spectrum for $C(K^-, K^+)$ reactions with a diamond target (right), which includes the contribution from two-step processes.

Expected Yields for $\Lambda\Lambda$ and H-Dibaryon Events

	KEK-E224 ^a	KEK-E522 ^b	J-PARC E42
$p_{K^-}(\text{GeV}/c)$	1.65	1.65	1.8
$p_{K^+}(\text{GeV}/c)$	$0.95 < p_{K^+} < 1.3$	$0.90 < p_{K^+} < 1.3$	$0.50 < p_{K^+}$
$\Lambda\Lambda$ yield	35 events	68 events	6200 events
H yield		4.8 events	940 events

^aJ.K. Ahn et al. (E224), Phys. Lett. **B444** (1998) 267. ^bC.J. Yoon *et al.* (E522), Phys. Rev. **C75** (2007) 022201. 0.9 Momentum of K⁺ [GeV/c] 0.8 0.7 0.6 0.5 04 0.3 0.2 0.5 10 15 20 Scattering Angle [deg.] KOREA UNIVERSITY

Simulated $\Lambda\Lambda$ and Ξ^-p Mass Spectra

○ Simulated invariant-mass spectra for $H(2250) \rightarrow \Lambda \Lambda^{a}$ and $H(2265) \rightarrow \Xi^{-}p$ decays. ^{*b*}

^{*a*}Simulation on two-step processes is based on INC calculation by Y. Nara, A. Ohnishi, T. Harada and A. Engel, Nucl. Phys. A614 (1997) 433.

Current Analysis Progress

 (K^-, p) and $K^{*-} \rightarrow K_S \pi^-$

- Most *K*^{*} particles decay inside ¹²C by tagging high-momentum protons in (*K*[−], *p*) reactions.
- E42 will look for a possible change in mass and/or width of K* in ¹²C.

Particle Identification with HypTPC

$K^- p \rightarrow K^+ \Xi^-$ Reaction

Physics Opportunities with HypTPC

J-PARC HypTPC Collaboration Meeting

December 2-4, 2022

Room 433, Asan Science Building, Korea University, Seoul, Korea

- E72 : $K^- p \rightarrow \eta \Lambda$, $\pi^0 \Lambda$, $\pi^0 \Sigma^0$, $\pi^{\pm} \Sigma^{\mp}$, $\overline{K}^0 n$, $\pi^+ \pi^- \Lambda$, $\pi^+ \pi^- \Sigma^0$ near W = 1.67 GeV. ○ E45 : $\pi^{\pm} p \rightarrow \pi \pi N$ in W = 1.50-2.15 GeV. ○ E90 : $d(K^-, \pi^-)$ for $\Sigma N(I = 1/2, S = 1)$ interaction at threshold. ○ P95 : $\pi^- p \rightarrow \phi n$, ΛK^{*0} , $\Sigma^0 K^{*0}$. ○ ${}^{3}\text{He}(K^-, \pi^{\pm})$ for ${}^{3}_{\Sigma}n$, ${}^{4}\text{He}(K^-, \pi^-)$ for ${}^{4}_{\Sigma}\text{He}$, ${}^{4}\text{He}(K^-, \pi^0)$ for ${}^{4}_{\Sigma}\text{H}$.
 - Kaonic nuclei via ${}^{12}C(K^-, p)X$ in coincidence with Λp .
 - Θ^+ search via $K^+d \to K^0 pp$ at 0.5 GeV/*c*.

This workshop would be a watershed moment to enrich the physics program with HypTPC.

고려대학교 KOREA UNIVERSITY