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Baryon-Baryon interaction

- Hyperon-nucleon (YN) interaction
= A extension of NN interaction

= Mass of s quark is similar to u,d quarks
- can be treated under the SU(3); symmetry
- Existence of hyperon in neutron star (Hyperon puzzle)

- B-B interaction between the octet baryons (n,p, A, X, E)
BB8=2TE8,F 14 10" &5 10 ¢ 8,.
= Some multiplets may have different futures from NN

* Due to Quark-Pauli effect and color-magnetic interaction
* 10, 8s-plets: strongly repulsive?

. BE channel (1 Eve 40dd YEve 10dd
- 1-plet: attractive core? (H-dybaryon?) w:.:itm } S {;11:; -
s YN(I=3/2) is suitable NN(I = 1) (27)
to investigate 10-plet N(I=3%)  #5((8:) +327)]  Z5[-(8a) + (10%)
EN(I=1%) —=[3(8,) - (27)] Z=[(8a) + (10%)]
NI=3) 27) (10)
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2*p interaction

- Strong repulsive core is expected z+
s Pauli exclusive principle in quark level
- In3S, (S=1, L=0) state, 2 u quarks
 have same spin, color with a high probability
> Some circumstantial evidences from X-nucleus interaction
- Spin-isospin averaged potential is repulsive
- Isospin dependence in A=4 system (I=1/2:bound I=3/2:unbound)
» HAL QCD calculation
- However, the strength of “strong repulsion” was ambiguous.

> It should be determined experimentally Phase shift of the 3S1 stafe___ |
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J-PARC E40 experiment
Measurement of do/dQ) of 2p scatterings

- Physics motivations
= Verification of repulsive force due to quark Pauli effect in the X+p channel
+ Determination of the strength of the repulsive force is also important.

= Systematic study of the XN interaction I=3/2, 3Even and *0dd:

10-plet of SU(3); B-B interaction
3S,:Almost Pauli forbidden
—strong repulsive force?

BE channel (1) 'Even or *0dd YEven or '0dd
NN(I = 0) (10*)
NN(I = 1) (27)
AN(T = %) ﬁ[{ﬁ,j + 3(27)] ﬁ[‘[su} + (10%)]
EN(I=13)  —=[38) - (27)]  5((8a) + (10%)]
EN({I =3) (27) (10)

- Purpose of experiments
= Measurement of do/d€) with high statistics
« 2-p elastic, Z-p —An inelastic scattering (£- data)
- X+p elastic scattering (£+ data)
= Data taking had been finished on June 2020.
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Difficulties of 2p scattering experiment

- Generally, hyperon-nucleon scattering experiment is difficult.
= Short life time of hyperons : 101° s
- Difficulty of producing plenty of hyperon beam
- Difficulty of detection and identification of scattering hyperon
= Previous Zp scattering experiments could identify only a few tens of events.

 Other experimental methods to extract N interaction

= Hypernuclei — only 4, He is observed.
« Large isospin dependence in A=4 system: attractive I=1/2 and repulsive I=3/2 state
+ Spin-isospin averaged potential was evaluated to be (V,W)=(30,-40 ) MeV
= Femtoscopy by ALICE collaboration (for low relative momentum)
+ Results on > °p interaction has been reported phys.lett.B 805 (2020) 135419
+ Now, statistical error is large. LHC Rung3, 4 data is awaited.
—Scattering experiment is difficult, but it is necesarry.

- How do we overcome these difficulties?
= High rate m beam and large acceptance spectrometer
+ Producing and tagging large amount of ¥ beam

= LH2 target and Surrounding detector system
- Large acceptance for the recoil proton
+ Reconstructing reactions from two body kinematics
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Experimental setup

Two successive two body reactions:
> production (nttp—K*Z+*reaction)
>p scattering

KURAMA Spectrometer
Identification of K*
Momentum analysis

Detect with CATCH system

Kinetic energy of recoil proton
I consistency check

CATCH system
-particle direction

2. ¥*p scattering Recoil angle of proton

K+

1. " production: mtp—K* £* reaction
Momentum of X*

Analyze with spectrometers

-

1.4 GeV/c i+ beam
1.32 GeV/c m- beam
19 M 1t beam /spill(=5.2s)

Forward calorimeter

K1.8 Spectrometer

/M%%%\ ' Momentum analysis of & beam



Analysis:2* production

- X*identification

« Missing mass of m*p—K*X reaction
« Momentum of £+

= Missing momentum of s+, K+

= ¥+p scattering analysis was performed for three separated momentum region
« Low (0.44-0.55 GeV/c), Middle (0.55-0.65 GeV/c), High (0.65-0.80 GeV/c)

Missing mass distribution >+ momentum distribution
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Analysis: CATCH part

- Tracking by CFT

d
= Particle trajectories are reconstructed. % |
- Particle identification E ------ -\3 -----

= Using energy loss correlation between CFT & BGO ? — /}:\
> Protons are well distinguished. =~

» Kinetic energy of protons are fully measured by BGO. CFT dE/dx Total E
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= 5E as a function of Ep @54°
E O F
bt 41— ? 1- o
S = -
% 3 = E 0.8 .
- ~ 0.6—
2 :_ —=— simulation
- 04—
1 - C —— data
. _ 0.2 N [ Fermi function fitted to sim
0 = : T i i i L T ol -I ; - A - Fermi function fitted to data
0 20 40 60 80 100 120 140 160 180 200 . L

=
&t
2

80 100 120 140 160 180 200

E+dE in CATCH [MeV] £ IMeV]



N,

Kinematical identification of 2+p scattering events

- Hereafter, we concentrate on events with 2 protons in final state.
o Y*p scattering followed by X*—pn° decay

Kinetic energy of recoil proton

I consistency check

Checking a kinematical consistency for

recoil proton
Recoil angle of proton *‘E,.as - measured kinetic energy with CATCH

2. T'p scattering

TH, target (@K - ‘E . : calculated kinetic energy from incident X+
o momentum and recoil angle
n AE (Z+p) = Emeas_Ecalc

+
1. £ production: n*p—K* I reaction K

Momentum of X*

o For X*p scattering events, AE distributes around o.

PO simulation -
s AECCpikiiL. Z+—pm° decay) — 0000 ;
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Background reduction

- Background reactions are also generate in a Monte Carlo simulation
and distribution in AE(Z+p) histogram is estimated.

signal backgrounds

Secondary PP scattering

(a)

X
/pN\p PV

() pm° decay + acmd?{ﬁal c01nc1degcm'bblm
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Background reduction

- Background reactions are also generate in a Monte Carlo simulation
and distribution in AE(Z+p) histogram is estimated.

signal backgrounds

Secondary PP scattering

(a)

In true S+p scattering, p¥ P J p\ p Py

Tracks of £+ and recoil proton
should contact.

selected,

() pm° decay + acmd%{ﬁal c01nc1degcm'bblm

Counts
o
T

------- decay
------- decay+accidental © p

3 e,
10 Bai®

------- decay+accidental others

simulation

10° =

™ p\ Ip

10

B of ) 1 TR
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closest distance between p and ¥ [mm]
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Background reduction

- Background reactions are also generate in a Monte Carlo simulation
and distribution in AE(Z+p) histogram is estimated.

signal backgrounds

Secondary PP scattering

(a)

(b)

X
‘/p\ P P ‘L € (missID)

() pm° decay + acmd?{ﬁal coincidence

+ )\ —_—— ~
1‘[ + -
p\ Jlp p\ Vp
If a proton carne from mp scattering by
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Kinematical identification of 2+p scattering events

- Hereafter, we concentrate on events with 2 protons in final state.
= ¥*p scattering followed by X+—pmn° decay

Kinetic energy of recoil proton

I consistency check

Checking a kinematical consistency for

recoil proton
*E eas - measured kinetic energy with CATCH

2. T'p scattering

Recoil angle of proton

\ e

0 ‘E . : calculated kinetic energy from incident X+
mt momentum and recoil angle

K+

E

1. £ production: n*p—K* I reaction
Momentum of £*

AE(Z+p)=E

meas —calc

- For X*p scattering events, AE distributes around o.

AE(Z*p) for data

—e— data
simulation all sum

decay
decay+accidental tp
decay+accidental others

—qOO 80 60 40 20 0

1 0.44<py<0.85
1-1<c080[<0.6

AN

20 40 60 80 100

AE for Xp scattering [MeV]

In total, approximately 2400 X*p scattering

events were identified !

80 times more than past KEK experiments
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Differential cross sections

- Differential cross sections were derived from ~2400 X*p scattering events.

» The data quality has beem significantly improved!
Main sources of systematic error: background estimation, efficiency for low momentum proton.

FSS and fss2 are obviously larger. On the other hand, ESCo8, NSC97f are consistent

o

to some extent.
Note:NSCo7f suggests the attractive 3S, interaction, which does not agree with the current

common understanding of XN interaction.

§ (a) 0.44 < p (deVic) < 0.55 FSS
E, fss2
3 NSCo7f
s *EFT NLO13 {cutoff 600MeV)
%EFT NLO19 {cutoff 600MeV)
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E289 data (0.35<p(GeV/c)<0.75)
E251 data (0.3<p(GeV/c)<0.6)
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Results from 2 data

- We have already reported the differential cross sections of
the 2-p elastic scattering and £-p—An inelastic scattering.

K. Miwa et al., PRC 104, 045204 (2021) K. Miwa et al., PRL, 128, 072501 (2022)
Differential cross sections of Z'p Scaﬂering Differential cross section of Z'p — An reaction
— T ©?5 1
% 8 : p};z.‘?u.m (MeV/c) '\.' i P}_=550'55|] (MeV/c) ; é - (a) 470-550 (MeVic) ‘:: (b) 550-650 (MeVic)
56 | - This work -"; + ..."‘ % 4:_ : _::_ ; E:ﬁ:;ﬁrtr NLO12 (cutoff 600 MV}
o [|° E2e9 o I o s ¢ T | s Chiral EFT NLO19 {cutoff 600 MeV)
B [ | chirEFT B T e - .‘é- -
S| e T n 3= b AR
ESCo8c et T : - -
o Lol T " - -
2r Lot T e T r{—.-ﬁ]- ______ 2— . —
to sl : w*’l"% """""""" S WL et ot S I
D:B-'.—“W._. M T R -ﬂ:ﬂ:}-&. [ S BT BT 1:: “ B
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E 6 - _$- _0-._“_ /Q\ .'r ol AN T Y T N N T YT NN N S
= = "1 05 0 0.5 o
g4l = A &)
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2f i I .
: FH;% e I lﬁ’* - Anyway, together with 2+p data, our data
ot T ) T b o man e AN ENARONIR . . . . L
oA I e et PR el willl be essential input to establish realistic

cost €% BB interaction models.
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Phase shift analysis for 2*p

- Extracting the contribution of the 3S, is important to
study the repulsive nature of X*p system due to the
quark Pauli effect.

- Referring to formalism of NN scattering, the differential
cross section was calculated as a function of phase shifts
and we tried to fit data.

Supplement of the Progress of Theoretical Physics, No. 42, 1968

PHYSICAL REVIEW C VOLUME 48, NUMBER 2 AUGUST 1993

Appendix

. . Partial-wave analysis of all nucleon-nucleon scattering data below 350 MeV

Formalism of Nucleon-Nucleon Scattering

V. G. J. Stoks, R. A. M. Klomp, M. C. M. Rentmeester, and J. J. de Swart*

Institute for Theoretical Physics, University of Nijmegen, Nijmegen, The Netherlands
(Received 15 March 1993)
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ase shitt analysis

« We considered contribution by D wave(L<=2), and Coulomb effects were
merely ignored.(bar phase shifts were regarded as nuclear bar phase shifts)

1 H'H _J: 1 1,12 1 1.12 1 1.1 2 J' 1.1 2
lo = <[ My |" + 5 |My |7+ =My |° + 5 My | —|”1 ol +5IM (5.3)
4 2 4 2 2
3eos?f — 1
My = hig, + 3hi p cosfl + 5hip, x (“‘“f) (5.4)
ig, i 3
.'Ull 11 = (hag, — %h Sty (Eh.{_u: + ah:{pl)cosﬁ
5 1 V2 ag s Joos? 6 — 1 .
+ (Eflil-f_]:s + Eh:l-r_;.2 + Eh:l-_r_;] - Th 51 DI) Y Tr [5.5}
My = (hag, + V20'S'="P1) 4 (2hsp, + hsp,) cos 8
5, i Jeos? ) — 1
+ (Bhap, + 2hap, + VISP & m“f (5.6)
3 3
1.1 .
ML = (—mmﬂ, +mmﬁ) x (— sin @)
5 ]. ]. :SSI :!DI . . = .
+ ( ‘h}f_a"r,;”1 f\.ﬁlr“m + mh.q”l - Eh ) % (—3cosfsind), (5.7)
1 1 1 1 ag _a
”1] [} = (—h:sp_ — —_mﬁ) * (—sinf) + (—_,i..__,D_ — —hap, — —=h “1” ”l) ® (—dcostsind),
vz otz V2UTT V2T V2
(5.8)
I 5 ] -I. 30 5] - " .
J‘f%.:ll = (Eh.{ﬂl —_ I—L;;F..!Dz + E;MDI - —‘]v@h S1- UI) * {35511‘! H}., LSH)
where partial wave amplitude h were defined as
j sr(cos(2€) ) exp(2idzsiay ) — 1) (35) and *D; case) (5.10)
12841 = - .
P S (exp(2idesaay, ) — 1) (else)
e o 1 = =
BSITPT o gin(26)) explidag, + idip, ). (5.11)

2k
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Phase shift analysis

« The function I,(0,p,6[27]1(p),6[10](p)) has 11 phase shift parameters.
; 6[27]:{81Soa83P2’63P1’83P0’ 61D2}’ 6[10]:{63813 81P1’ 83D3’83D2363D1381}
- O[27] are well constrained from NN data and are regarded as constants

taken from
= pp scattering based on complete SU(3)f symmetry.
* Less realistic, but independent from baryon-baryon interaction model.
s NSCo7f or ESC16 in order to approximately consider the effect of the flavor
symmetry breaking and the difference of meson exchange potential.

- O[10] are to be investigated, but 6 parameters are still too much to

perform meaningful fitting.
= only 0,5, and 0,p, were treated as free parameters.

= Rest 4 parameters (8,p,,5,p.,0,p,, and ;)
are fixed at o or NSC97f and ESC16. BB channel (1) YEven or *0dd YEven or '0dd
Note : the sign of 6., cannot be determined. YU =0 (10%)
Positi q 351 od NN(I = 1) (27)
osltlve and negative cases are examined. :
5 AN(I=3)  —=[(8:) +3(27)] 5[ (8a) + (10%)]
EN(I=4)  [3(8.) -~ (27)]  Z=[(8a) + (10%)]
EN({=3) (27) (10)
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Fitting results

- Fixed phase shifts are taken from ESC16

* 0,g,<0 case
- X?/ndf is approximately 1.

Low momentum middle momentum high momentum
(0.44<p2<0.55 GeV/c (0.55<p2<0.65 GeV/c (0.65<pX<0.80 GeV/c

I i 8795 /13
mean 0.496) — mean 0.59) [Fre  wen mean 0.71)
' 6 Prob 0.2232 o Prob 07882
= o Prob 09751 . pom 0253+ 0 - pom 0303+ 0
w pcm 0214+ O o 3
= - 3150 1086+ 0 sF 5150 28+ 0
= 5180 191+ 0 5k C
E 5351  -23.29 £2.255 - 5381 _31.24 £ 2.737
Ll -
e cost 2610 1958 4F 51P1 15.15 £ 7.193 4F &1 3.737 £ 6.654
= o1t 1 6652 " 53P2 85+ 0 [ 53P2 282+ 0
= 33P2 676+ O [ C
S - 33P1 189+ O 53P1 208+ 0
= 53P1 a2 0
59P0 719+ 0 C 3P 350+ 0 33P0 692+ 0
D2 3.33 : 0 - 81D2 499+ ¢ 51D2 661+ 0
3aD3 1.14 ; 0 [ 5303 159 0 53D3 193+ 0
33D2 45.53 ; 0 - 83D2 -487+ O 83D2 642+ 0
- 3301 1.35 : 0 5 5301 069+ O 3301 07+ 0
- [ 1 520+ 0 el 514 0
| . | L 5'240 bt T et PP s
T e e Y "1 05 0 05 1 15 1 1.5
€086, €086, cos6
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Obtained phase shifts

- 3S_:almost consistent with ESC16 (6<0) or NSCo7f (6>0).

|6]: 28.3 1.5+ 2.1 (low), 23.4F+ 2.0t 3.0 (mid), 32.5 *=2.5+ 2.5 (high)
Fitting error and effect of the different sets of the fixed parameters
» The interaction in this channel is moderately repulsive.

- 1P :ambiguous.
= They may support the prediction of the fss2, ESC16, NSCo7f in which the interaction of

B¢, [degree]

o

351

1P1 channel is weakly attractive.

= A 53510
= 1-= A 53510
30 — - B 5351<0
- B 5351-0
60 - —e C 5381<0
40— |-e-C 83510
= ===: ESC16
20= —— NSCO7f
- - f582
0==_, == vEFT NLO19
- ""l".':g-::.:._,nw_'-
20 el N eI
- T, ﬁ#
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|=—— NSC97f
LEETS 174
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Comparison with HAL QCD

« 03S, can be compared with HAL QCD!
 Our results are consistent with HAL QCD calculation with larger t-to.

H. Nemura AIP Conf. Proc.
2130, 040005(2019)
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XEFT N2LO

- Recently, the yEFT N2LO calculation for AN-XN
interaction is presented.
= J. Haidenbauer, HYP 2022 presentation
= J. Haidenbauer, EPJ Web Conf., 271 (2022) 05001

« In YEFT N2LO, Our data were used to determine LECs
in P-wave
s LECs in S-wave were determined by low-energy Xp

scattering data.

= From NLO to N2LO, there are no new additional LECs in
the two body sector.



=
Comparison with XxEFT N2LO

 27p scattering

= YEFT N2LO well agrees with our data in the low momentum region.
However, small differential cross sections in the middle momentum region
were not reproduced.

= In our data, 63S1 in the middle momentum region were smaller than in other
momentum region. Influence of the Anp threshold (pZ=0.62 GeV/c)?

Y>3 p p->2p J. Haidenbauer,

8 T . SWWLd EPJ Web Conf., 271 (2022) 05001
L [ L
o {ow) I 7 (mid) |
LAy Pap =500 MeVie 7 Py =600 MeVic 4
i i i ]
JLEC for 1P1 state was fift
[ . 11
for this data I
L !0 A 5351<0
= S5t \ P T _F 1= A 58100
8 | FA £ 80- B 5351<0
i I 3 . B 535150
%4,_ / = 60 - C 5351<0
5 : & o e
T al ]l 20F- = NSCO7f
3 i r - - fgs2
C OE-._,,"_ == yEFT NLO19
T et —. — —=IN— 20: "-'.-':"’""-ll'.';_- _____
2k - —=U= iy % ——
i + ] _a0F IS,
1; ; 760:_ T
: LEC for 1P1 state : T,
B 7 [ B :...I....I..|||||||||||||||||||||||||||||||||||||
QI_ PR T N N xwas Set\ tO\ O T ] QI_ PR TR TN RN N TR T WA SO Y T SN TN SN SO T S 0 0_ 0.2 0_3 0_4 0,5 0.6 0_7 0.8 0.9 1
1.0 -0.5 0.0 0.5 1.0 1.0 -0.5 0.0 0.5 1.0 ¥ momentum [GeV/e]

cos 6 cos 0
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Comparison with XxEFT N2LO

- Xp elastic, 2 p—An scattering

= yEFT N2LO well agrees with our data, as the yEFT NLO.

s To determine the P-wave LECs uniquely, data for additional channel (Ap

elastic, X-p—2°n, ) or observables are needed.

+ J-PARC E86 experiment (Ap scattering @Ki.1 beam line)

I p->An

Ip->Ip

T

Pap = 900 MeV/c

pIab

=500 MeV/c

7J. Haidenbauer,
'EPJ Web Conf., 271 (2022) 05001

BE channel (7T) TEven or #0dd Even or '0dd
NN{I=10) (10%)
NN{I=1) (27)

AN =4) | 5008 +3(27)] F[~(8a) +(10)]
EN(I=14) | B8 - (27)]  Z((8a) + (10%)]
SN{I=3) (27) (10)
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Comparison with XxEFT N2LO

- Total cross section
= YEFT N2LO well agrees with our data for pX~o0.5 GeV/c.

= In this plot, total cross sections from experiment were calculated as

2X 04 s<cosf<0.5- 1 think angular dependence (mainly come from
contribution of P waves) should be considered for good comparison.
J. Haidenbauer,

.
P> AN 5> I HYP2022 presentation
200 T T T T T T T T T T |50.|||||||||||||||||||||
® Eiseleetal
‘ . ©  Ahnetal
isele etal. ] 1 m  Nanamura (2022)
ondo et al. il -—-— NLO 1
wa (2021) I —— NNLO
H- — | \ — fss2
150 \ s+« NSCOTF
@ Engelmann etal. 100 —— dilich 04 _
O Stephen
m Miwa (2022)
o
. E
]
50+
o b e b b 1 v e b by L a1 IS T AT T T T A T T B A
q{]ﬂ 200 300 400 500 600 QOU 200 300 400 500 600 700 QOO 200 300 400 500 600 700

P (MeVic) P (MeVic) P, (MeVic)
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Future 2*p scattering experiments?

- Higher momentum?
= To understand the short-range force and behavior of quark-Pauli effect,
data for higher momentum is desired.
 In present data, the distance of two particles were 0.5-0.8 fm.
» As long as contributions of D- and higher waves are small (or well
estimated), our phase shift analysis method will work. The phase shifts of
the 3S, and 'P, could be determined only from do/d(Q.

« Most of theoretical models for BB interaction are constructed using below 1GeV/c data...
Will they be reliable?

= Different spectrometer setup for (;*,K*) reaction?
- E40:1.41 GeV/c it and 3° <Oy<25° , more backward angle?
s Experiment @m20 beam line will be possible?
 LOI for Ap scattering (R. Honda et al., J-PARC Lol 2020-8)

« Additional observable?

s If 3D, and e1 can be determined with a aid of observables, our
understanding of 3S -3D, state will be deepened.

= Analyzing power can be derived even from E40 data. I will study phase
shift analysis using analyzing power together with do/dQ
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Future 2*p scattering experiments?

6

- Wider angular acceptance? I s
= More forward angle Do
» cosOcm<0.8, 20<Ep [MeV] <30 o ;
- Important to resolve a ambiguity of 6'P, 2 0
- Recoil proton can be measured IF
by major modification of CATCH? Y08 06 0403 0 02 04 06 "%M‘
* (e.g. SSD tracker instead of CFT)
= Ultra-forward angle ] lg_ e WP S
* cosOCM ~0.95, Ep <5 MeV § i _?5?2::
- By checking Coulomb interference, ® o B ot a
the sign of 6351 will be determined. i T
- Recolil proton would stop in LH2 target. 2;”‘ i —
- Low-density active target is needed. ;——%?‘*’; ;+ ;E *+

o TPC With H2 gas? -1 08 0.6 04 -02 0 02 04 06 c(?s-g 1

CM,L
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Summary

- Hyperon-nucleon scattering experiment gives us very important
information for B-B interaction, especially quark Pauli effect.

« J-PARC E40 Experiment

= High-statistics Zp scattering experiment
« Y +p elastic scattering, X-p elastic scattering, X-p—An inelastic scattering
» Data taking was finished by June 2020.
- do/dQ were derived by about 2,400 X* p scattering events.
> We successfully performed difficult YN scattering experiment!
- By not only comparison with the existing theoretical calculations but also
derivation of the phase shifts of the 3S, and 'P, channels, the nature of
>*p interaction was investigated.

s The absolute value (and the strength of interaction) of the 3S, is much smaller
than fss2 and FSS expected.

« Recent YEFT N2LO calculation using our data was introduced.
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Cut conditions to select 2+

AE(Z+p) for data after cuts

« There are many backgrounds w/o cuts. 4 450 ——dw
R . = simulation all sum
- Spatial consistency cut P N z
s At scattering and decay point 350 e et v
300

------- decay+accidental others

= Vertex cut, closest distances cut

- Kinematical consistency cut 200
= Missing mass cut for decay proton 150
= pp scattering consistency
= gip elastic scattering cut

1 0.44<py<0.85
—1<cos6CM<1 0

PAN

qO{) 80 60 40 20 0 20 40 60 80 100

AE(Z+p) for simulation before cuts AE for Zp scattering [MeV]
al AE(Z*p) for data before cuts
£ 40000 vp 2
5 so00- || o 2 500k
_______ decay 02500'__
30000 T e decay+accidental & p E
------- decay+accidental others 2000— #
25000 : : - ;
simulation - '
20000 1500~ &N
- AN
15000 1000f- d "
10000 » g .
5001 s "
5000 C p
- __----"":.-- O A M n
400 =80 60 —40 20 0 20 40 60 80 100 800 =80 60 40 200 30 10 '6'0 =80 100

AE for Xp scattering [MeV] AE for Yp scattering [MeV]
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Cut conditions to select 2+

- Spatial consistency cut
= At scattering and decay point

= Effective to cut backgrounds derived from accidental coincidences

 Vertex cut

= Scattering vertex should be in the LH2 target, decay vertex after the scattering

should not be far from the target.
« Closest distances cut

Simulated closest distance

at scattering vertex

selected

Counts

10° oo,

. N B

R P e ki decay+accidental others
10 =
10 =

T nifﬂﬂﬂ el T’Ewﬁiﬁ*

0 5 10 15 20 25 30 35 40 45 50

closest distance between p and X' [mm]

Counts

10°

10?

.
<

°_|||||

Simulated closest distance
at decay vertex after scattering

AL |I‘|ﬂ
l"‘ .|_'.I

. selected

all
p

decay+accidental others

..InrHJ-Iﬂ i,

simulation

T
5 10

S0 s 30 35

40 45 50

closest distance between p and X"’ [mm]
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Cut conditions to select 2+

- Kinematical cuts
- Missing mass cut for decay proton

= 71° missing reaction, X*p scattering followed by X~ —pmn° decay and secondary pp
scattering events is selected.

- Elastic np scattering cut

> Proton from accidental mt+p scattering induced by accidental 1.41 GeV/c m+ beam
was rejected.

Missing mass for

5+ —>p© decay after scattering Correlation between 0lab and E of proton

200

Zz > - 1 1 —25 2
E T : selected 2 1s0F- n+p elastic : -
21000 Eoeeesa > = 180F . : s
iy ; = 160F- scattering ©
: : £ b | inducedb %
800 ERCU= y
B = 120F 15
600 g 100F
B = C
- 80
400 2 F 10
B [ 60__
B % aoF
200~ 2 40F
C : . M 20:_ - e
ettt Lt L b 0L 1 e s R T v Y 0
%3025 202 045 -01 —0.05 0 005 0.1 0 10 20 30 40 50 60 70 80 90
M§ for ¥ - pX [GeV¥e'] 8,,, of the ‘‘recoil proton”’ [degree]
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Cut conditions to select 2+

« Kinematical cuts

- Kinematical consistency cut for secondary pp scattering
- The momentum of decay proton (incident proton for pp scattering)
- Can be reconstructed by two ways:

« Sum of the momenta of two detected proton
* Psum™P1+Pp2
« Calculation from £+ momentum and direction of pg,,,

Pealc ‘
« Consistency Ap=p.,,~Pealc /pa \p
- In pp scattering, opening angle of 2 proton should be ~90°
« Secondary pp scattering events 02 .
- Concentrates on around e "

* (Ap, @)=(0,90° ).

=
=
1

III\II\IIII.IIl||||.|.(lIlJJI{I.I"llllll‘lr.ll.l.\

attering [GeV/ce]

Ap f£r PP s¢
5=

|
) <
—

—0.15

_ P B BRI EPRRTN B a ikt 2 STRTR EPRTRS B
0277720 40 60 80 100 120 140 160 180
opening angle between 2proton [degree]

(—
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Background estimation

AE spectra were fitted by the sum of the simulated distribution of

considered reactions. Low-mommentum
° Parameter: Scale faCtOI' Of ;% 3ok -1.00 <cosO ;< -0.90 0 90 <cosb < -0.80 0 80 <cos6 ;< -0.70 0 70 <cos§CM< -0.60
each reaction 2 - - l‘ lf[
0 ! : ﬁ-fg : s&i{ ULg, : ,ﬂi,,gggﬂ 1‘@
. e S5i _mim bsb SREEE kﬁi : =
- Fitting was performed for each £ 62 ofsoi<cosem< -0.50 | 0.50 <cosB < -0.40 | -0.40 <cosB_,, < -0.30 | -0.30 <c059CM<$(] 20
3 sof g i i

scattering angle and momentum {
L.

independently. : p& : & | J

20} o - - ;’I\! ; d i
NI N . WL
§ -0.20 <cos8 ;< -0.10 | -0.10 <cos§c1w< 0.00 }0.00 <c051LM< 0.10 0.10 <c059%“< .20
o 60 [
« Uncertainty from binning of AE B ﬂ*} } |
L - L T ] 1 _ ‘
spectra and various constraints | ]JL _ '!“I' _ iy _ #
. 45 I J H‘
on parameters are considered. | . ?i;&, P N L S .
< 60F0.20 <L059CM< 0. 3{) H0.30 <cosB ;< 0. 40 —&— dataall
S 40 ] z'p lati
J:I # decay
20} 1

“ L ": ——
Lk

decay+accidental np

decay+accidental others

Q00 "50" 0 50 100 -850 0 50 100
AE [MeV] AE [MeV]
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Background estimation

AE spectra were fitted by the sum of the simulated distribution of
middle mommentum

considered reactions.
Parameter: scale factor of
each reaction

Fitting was performed for each
scattering angle and momentur
independently.

Uncertainty from binning of AE
spectra and various constraints
on parameters are considered.

Counts
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Background estimation

- AE spectra were fitted by the sum of the simulated distribution of
considered reactions. high momentum

Parameter' Scale faCtOI' Of 6 -1.00 <cos0 ;< -0.90 | -0.90 <cosB ;< -0.80 | -0.80 <cosb ;< -0.70 | -0.70 <cos6 < -0.60

Counts

[ ]
. ar
« each reaction
2
PY Fitting Was performed for ea % Of 0'6(l] I<C(-)SQCM£ -050 ':0.5;) +<cosecw:[<|i -040 -0.4(; <cosGCNI<::(:):i:Z’;E)-. '-0.3-0 ;cosem;% (]20
. 3 10 -
-  scattering angle and mom h H
- independently. 1 ;H ! S | {
Joagdety | % o i | s
% 15F -0.20 <cos8 ;< -0. 10 0 10 <e0s6,,< 0.00 [ 0. 00 <c059 < 010 0. 10 <c059 < 0 20
« Uncertainty from binning of ° | d
. dl
. spectra and various const 5 ﬁ Ll
¢ on parameters are COIlSld‘ g 020 <cos6,. <030 1030 <cos, <0=40 “T0.40 <cosBon,< 0.50 030 <cos, <060 '

Counts

JE S 'ﬂ '4

Q050 o ae 00 G 0o 50~ 100 50 o 50 100 50 0 50100
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o




1|

The derivation of the differential cross sections
do( denr) N (p, cos Ocm )
—\P, COSUCM ) =
g =(p, c0sOcni)p - Na - Lion (p) - AQ

df?
« N:the event number of ¥p scattering
- &:(averaged)efficiency evaluated by simulation
- L,,: Total flight length of >+ in LH, target

w 250 w8
£ F (2)0.44 < p (GeV/c) < 0.55 E (b) 0.55 < p (GeV/e) < 0.65
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LM 1
# 5 »
AT

sof 10 -[[]-
E & 10 5 'é'
0 0 IIIIIIIIIIIIIIIII c llllllllllllllllllll
- o ] CcOos oM - o ’ - o ’

50
ook (©)0.65 <p (GeV/c) < 0.80

ounts

=

3

=




e —: 2|

The derivation of the differential cross sections

do 49 o cosfony) = N (p, cos Ocm )
d1™ (pa COS QCM)P - N - Lot (p) - Af)

 N:the event number of 3p scattering
- e:(averaged)efficiency evaluated by simulation
- L,,: Total flight length of >+ in LH, target

g 014L (@) 0.44 < p (GeV/c) < 0.55 € g.14f (b) 0.55 <p (GeV/e) < 0.65 £ p.14f- (©) 0.63 < p (GeV/e) < 0.80
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g 0.1 g o0af o gy g 01f 0
S T T I e S ¥
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0.04 0.04f .3, 0.04F o, B
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0.02 'H' 0.02f & 0.02
= a = = P 0
P S PR PP BRI . i v olll'g'_ | SPEFEPE EPEPEPEPI BN B
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CATCH efficiency

- Proton detection efficiency of CATCH consists of
= Energy measurement efficiency
= CFT tracking efficiency

- They depends on (E,, 0., Zs;ce)

- CATCH efficiency was evaluated from simulation
and pp scattering data.

- In simulation, proton with arbitrary (E, 0, Zy,ce)
can be generated.

- In pp scattering data, (E,, 0,) is restricted by the
kinematics of pp scattering.
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CATCH efficiency

- Energy measurement efficiency
= Simulated efficiency well agree with the data.
» Simulated efficiency is used.

. 1F —e— data
9 = . . — 300 =1 =
5 09F —=— simulation Z - e
E E E : _Olg.g
I 5} - —
E oob £ 200 o
g E - = r
= ) C
§ 0.55— * E 1501
E 04F ¥ -
% og3F 100/~
= 02k 5. -
= A C
- 50—
0.1:— C
0: ||||||||||||||||| 0-||||||||||||||||||||||||||||||||||| n
0 50 100 150 200 250 0 20 40 60 80 100 120 140 160 180

E; . [MeV] 6,5, of Proton [deg]
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CATCH efficiency

- Data-based efficiency is less than simulation-based efficiency
= Because of zig-zag structure of CATCH spiral layer
Difficult to reproduce in the Geant4

« CFT tracking efficiency is formulated as Fermi function and parameters are
determined from pp scattering data.
Emax(f, 2)

E{:']-“rl:ﬂ, E, 1] — _— :
1+ t::q}(‘r:_‘r:]”"f{ﬂ})

d(f)

- Note; Because CFT tracking requires at least 6 layers hit in the fiber tracker, CATCH
cannot analyze (detect) low energy protons.

:‘? E % 300 1 g
= B ; = 0.92
= - : <. 250 =
o ] @
v 08— : s
s :
0.6— : s
L : 2
C H —=— simulation z 150
04— i
B : —— data
E
0.2 - B Bt bbb Fermi function fitted to sim
- i
L ; Fermi function fitted to data
L N
00 20 40 60 80 100 120 140 160 180 200 40 60 80 100 120 140 160 180 0

E} . [MeV] 6,,, of Proton [deg]
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CATCH efficiency

- To evaluate uncertainty of CFT tracking efficiency for low energy
protons, two possible highest and lowest CFT efficiencies were
considered.
= Except for low energy protons, do/d{2 for pp scattering using proton beam

in calibration data are well derived.

- The angular dependence of secondary pp scattering events
1s sandwiched by two efficiency-corrected simulations.

L data

w
*51800
c31600
1400
1200
1000
800
600
400
200
0 - I T A B
-1 08 066 04 02 0 02 04 06 08 1
cosGCM’p

——a—— simulation with the highest efficiency

———— simulation with the lowest efficiency
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Total flight length of %

- Total flight length of X+ particles in the LH2 target
was estimated by a Monte Carlo simulation.

= ¥ with analyzed momentum was generated at analyzed
vertex in the LH2 target
= Flight length were summed up until ¥ decayed or exited LH2 target.

@ low momentum
=1
z 10°
[ R ICLTEEC middle momentum
10° S N T U ISP PP high momentum
104
16} :_ Region Low Middle High
5 All events [em] 369 x 107 1.13 x 107 6.70 x 10°
mz:g Sideband BG [cm| 0.27 x 107 0.12 x 107 0.86 x 10°
- Sy St [em] 3.42 % 107 1.00 % 107 5.84 x 10°
L L 1 1 I L 1 1 I 1L 1 1 l L 1 1 I L1 1 I L L1 1 I Ll 1 1 I 11 1“'! I Il'l L. I L1 u
0 10 20 30 40 50 60 70 80 90 100

Flight Length [mm]



