Recent Results and Future Program of the NKS2 Experiment

Masashi Kaneta Dept. of Phys., Grad. Sch. of Sci., Tohoku Univ.

> 2022/12/5 ELPH workshop C003

The NKS2 Experiment

- NKS2: Neutral Kaon Spectrometer 2
 - $\gamma + p/d/A$ reaction
 - Photon tagging system and magnetic spectrometer
 - Liquid hydrogen/deuterium target for p/d
- Physics program
 - Strangeness production in the threshold region of $\gamma+d$
 - Di-baryon search in $\gamma + d \rightarrow d + \pi^+ + \pi^-$
 - Search of η'd bound state
 - An interaction via FSI in $\gamma + d \rightarrow K^+ + \Lambda + n$
 - Life time measurement of ³∧H
- Collaboration
 - Tohoku Univ., Tokyo Tech., Tokyo Univ., (Lanzhou Univ.)

Photon Beam Line and NKS2

in Research Center of Electron Photon Science (ELPH), Tohoku Univ.

Photo taken in 2016/5

The NKS2 Experiment

- Tagged photon beam
 - $E_{\gamma} = 0.80 1.25 \text{ GeV}$
- Liquid D₂ or H₂ target
- Magnetic spectrometer
 - Tracker
 - Two drift chambers
 - Charged particle momentum, trajectory, and decay vertex
 - Hodoscopes
 - Plastic scintillator + PMT
 - Time-Of-Flight (TOF)
 - Particle identification combined with momentum
 - Electron Veto
- Acceptance
 - Covering large kinematic region including forward angle

Particle Identification

- TOF and momentum
- Good separation of $\pi/p/d$

Dibaryon Search

Dibaryon

$D_{\rm IS}$ (I: isospin, S: spin)	D_{01}	D_{10}	D_{12}	D_{21}	D_{03}	D_{30}
BB	NN	NN	NΔ		$\Delta\Delta$	$\Delta\Delta$
Mass formula	А	А	A+6B	A+6B	A+10B	A+10B
Approx. mass [MeV]	1878	1878	2160	2160	2348	2348
q q q q q q q q q q q q q q q q q q q	euteron	unbound pp, nn , $npMass formuM = A + BA: 1878B: 47 M$	Work of Y. la I(I(I+1)) MeV eV	Toyama $+ S(S+1)$	WA WA - 2)	SA/CELSIUS SA at COSY <i>d</i> *(2380)
	F.J. Dyson and N.H. Xuong, PRL 13 (1964)					

Dibaryon

DIS (I: isospin, S: spin)	D_{01}	D_{10}	<i>D</i> ₁₂	D_{21}	D_{03}	D_{30}
BB	NN	NN	NΔ	NΔ		$\Delta\Delta$
Mass formula	А	А	A+6B	A+6B	A+10B	A+10B
Approx. mass [MeV]	1878	1878	2160	2160	2348	2348
q q q q q q q q q q q q q q q q q q q	euteron	unbound pp, nn , $npMass formuM = A + BA: 1878B: 47$ M	Work of Y. ala B (I(I+1)) MeV EV	Toyama $+ S (S+1)$	WA WA	SA/CELSIUS SA at COSY <i>d</i> *(2380)

Past Studies of D_{12}

• Experiment

- $\pi d \rightarrow pp$ scattering PWA
 - R. Arndt et al., PRC48, 1926 (1993). B.S. Neganov et al., JTEP7, 0528 (1958).
- $\pi d \rightarrow \pi d$ scattering PWA
 - R. Arndt et al., PRC50, 1796 (1994).
- Coupled channel analysis of the reactions above & pp scattering
 - C.H. Oh et al., PRC56, 635 (1997).
- Theory
 - Bag model
 - P.J. Mulders, A.T. Aerts, J.J. de Swart, PRD 21, 2653 (1980).
 - Bag model + π cloud correction
 - P.J. Mulders, A.W. Thomas, JPG 9, 1159 (1983).
 - πNN three-body Faddeev
 - A. Gal, H. Garcilazo, NPA 928, 73 (2014).
 - NN scattering including intermediate dibaryon:
 - M.N. Platonova, V.I. Kukulin, NPA 946, 117 (2016).

Recent Experimental Data

T. Ishikawa et al., PLB789, 413 (2019)

FOREST, $\gamma d \rightarrow d \pi^0 \pi^0$

ABSTRACT

Coherent double neutral-pion photoproduction on the deuteron, $\gamma d \rightarrow \pi^0 \pi^0 d$, has been experimentally studied at incident photon energies ranging from 0.75 to 1.15 GeV. The total cross section as a function of the γd center-of-mass energy shows resonance-like behavior, which peaks at approximately 2.47 and 2.63 GeV. The measured angular distribution of deuteron emission is rather flat, which cannot be reproduced by the kinematics of quasi-free $\pi^0 \pi^0$ production with deuteron coalescence. In $\pi^0 d$ invariant-mass distributions, a clear peak is observed at $2.14 \pm 0.01 \text{ GeV}/c^2$ with a width of $0.09 \pm 0.01 \text{ GeV}/c^2$. The spin-parity of this state is restricted to 1^+ , 2^+ or 3^- from the angular distributions of the two π^0 s. The present work shows strong evidence for the existence of an isovector dibaryon resonance with a mass of $2.14 \text{ GeV}/c^2$. The 2^+ assignment is consistent with the theoretically predicted \mathcal{D}_{12} state, and also with the energy dependence of the πd partial-wave amplitude ${}^{3}P_2$ for the $\pi^{\pm} d \rightarrow \pi^{\pm} d$ and $\pi^+ d \rightarrow pp$ reactions.

They suggest

 $\gamma d \to R_{IS} \to D_{12}\pi^0 \to d\pi^0\pi^0$

Isoscalar dibaryon Isovector dibaryon

We are searching for the other charge state ($d\pi^{\pm}$) by the $\gamma d \rightarrow d\pi^{\pm}\pi^{\pm}$

Old Measurement of the $\gamma d \rightarrow d\pi^+\pi^-$

11

Benz et al., NPB79, 10 (1974) Buble chamber experiment

- E_Y = 1.1 5.3 [GeV]
- ρ and ω production on deuterons
- Limited t region
 - 0.04 < |t| < 0.20 GeV²
- Low d momentum
 - pd<0.4 GeV/c
- No peak structure
 - p⁰ and phase space can explain the date

Search D₁₂ in NKS2

- Data taken in 2010
 E_v = 0.78 1.08 GeV
- Reaction
 - $\gamma d \rightarrow d \pi^+ \pi^-$
 - 2-track analysis
 - \bullet Identification of d and π
 - The other π is identified by missing mass
 - 3-track analysis
 - Tried to check consistency
 - Not shown in this talk
- Y. Toyama's work

Invariant Mass

能

Invariant Mass & $cos\theta_d$ Distributions

- Band structure below $N\Delta$ threshold in $M_{d\pi}$
- ρ^0 contribution in M $\pi\pi$ ~0.7
- d emitted backward

Differential Cross Sections

- (3 Breit-Wigner + Phase Space background)
 Resolution
- Mass & Width of ρ⁰ were fixed at 0.77 and 0.15 GeV

Mass & Width of the $d\pi$ Resonances

- Weighted average of higher energy points
 - M = 2.133 ± 0.001 (stat.) ± 0.009 (syst.) [GeV]
 - Γ = 0.103 ± 0.002 (stat.) ± 0.009 (syst.) [GeV]
- Systematic errors of fitting
 - Standard deviation of the all points
 - ρ⁰ free fitting result

Lower than N Δ threshold (~2.17 GeV) Narrower than single Δ width (~0.12 GeV)

Consistent with D_{12} (z=+1) from FOREST (M=2.140±0.011 GeV, Γ =0.091±0.011 GeV)

z = +2 or 0 states of D_{12} ?

Total Cross Section

 No significant structure

- ~2 µb
- Syst. error ~8%

• $|t|=0.15 \text{ GeV}^2$ $\Rightarrow p_d \sim 350 \text{ MeV/c}$ $t = (P_{\gamma} - P_{\pi\pi})^2$

 Out of NKS2 acceptance due to the energy loss

Possible Scenarios for 2π Production and $\cos\theta_d$ Distribution

- They can be separated by cosθd (γd CM frame) distribution
- If no isovector dibaryon (conventional), cosθ_d shows strong backward peak

Possible Scenarios for 2π Production and $\cos\theta_d$ Distribution

Backward enhanced structure in |t|>0.15 GeV² region

- But not so steep peak
- Can not be explained by Scenario 3 only
- $d\sigma/d\Omega > 0.1 \ \mu b/sr \ in \ cos \theta_d > 0$
 - \Rightarrow unconventional process (i.e. dibaryon)

To conclude, measurement of lower momentum (< 400 MeV/c) of deuteron is needed

Future Program of Strangeness

An interaction - Neutral Channel -

How to Measure An interaction

- No neutron and no Lambda target
 - Simple scattering experiment is impossible
- Possible experimental approach
 - See an effect of Λn final state interaction in cross-section
- Reactions proposed by theorists
 - $\gamma d \rightarrow K^+ \Lambda n$
 - H. Yamamura, K. Miyazawa et al., PRC61 (1999) 014001
 - $K^-d \to \Lambda n\gamma$
 - W. R. Gibbs, S.A. Coon, H.K. Han, and B.F. Gibson, PRC61 (2000) 064003
 - $K^-d \rightarrow \Lambda n\pi^0 (K^-d \rightarrow \Lambda p\pi^-)$
 - Y. Iizawa, D. Jido, T. Ishikawa, ArXiv:2201.06737 [nucl-th]

How to Measure An interaction

- No neutron and no Lambda target
 - Simple scattering experiment is impossible
- Possible experimental approach
 - See an effect of Λn final state interaction in cross-section
- Reactions proposed by theorists
 - $\gamma d \rightarrow K^+ \Lambda n$
 - H. Yamamura, K. Miyazawa et al., PRC61 (1999) 014001
 - $K^-d \to \Lambda n\gamma$
 - W. R. Gibbs, S.A. Coon, H.K. Han, and B.F. Gibson, PRC61 (2000) 064003
 - $K^-d \rightarrow \Lambda n\pi^0 (K^-d \rightarrow \Lambda p\pi^-)$
 - Y. Iizawa, D. Jido, T. Ishikawa, ArXiv:2201.06737 [nucl-th]

How to Measure An interaction

- No neutron and no Lambda target
 - Simple scattering experiment is impossible
- Possible experimental approach
 - See an effect of Λn final state interaction in cross-section
- Reactions proposed by theorists
 - $\gamma d \rightarrow K^+ \Lambda n$ \leftarrow I proposed the experiment at ELPH
 - H. Yamamura, K. Miyazawa et al., PRC61 (1999) 014001
 - $K^-d \to \Lambda n\gamma$
 - W. R. Gibbs, S.A. Coon, H.K. Han, and B.F. Gibson, PRC61 (2000) 064003
 - $K^-d \rightarrow \Lambda n\pi^0 (K^-d \rightarrow \Lambda p\pi^-)$
 - Y. Iizawa, D. Jido, T. Ishikawa, ArXiv:2201.06737 [nucl-th]

Characteristics of the Reactions by Photon/Hadron Beam

FSI effects appear at threshold region

- No resonance decay effects
- Cross section is small
- Photon beam
 - $\gamma d \rightarrow K^+ \Lambda n$
 - < 1 µb
 - Dominant B.G.: e^+e^- pair production and pion production
 - $K^-d \to \Lambda n\gamma$
 - ~2x10⁻³ of K-d total (~several 10 mb) cross section: ~100 μb
 - Using K-stop candidate
 - B.G. photon: $K^-d \rightarrow YN\pi$, $\pi^-d \rightarrow nn\gamma$
 - Some kinematical cuts are needed to reject B.G.
 - B.G. in photon detector: neutron

FSI Effect in the K⁺ Cross-section

24

One More Topic:

Lifetime of Light Hypernuclei

Lifetime of Light Hypernuclei

³∧H puzzle

 B_{Λ} ~0.16 MeV [1] $\tau = ~200 \text{ ps}$ $(^4_{\Lambda}\text{H}: B_{\Lambda}=2.12 \text{ MeV}[2])$ $(\tau_{\Lambda} = 263 \text{ ps})$

Small Λ biding energy Shorter hypernuclei lifetime than free space Λ

Difficult to explain simultaneously

[1] https://hypernuclei.kph.uni-mainz.de/
[2] S.Nagao, Doctoral thesis 2015 Tohoku University, A.Esser, S.Nagao, F.Schulz *et al.*, Phys. Rev. Lett. **114** (2015)222501.

³_AH Lifetime Measurement at ELPH

- *K*⁺ ID with new TOF counters
- π decay time with new TOF
- Photon beam course by new beam position monitor

Detector Upgrade Plane and

Status of Preparations

Detector Upgrade Plan

- Kaon Identification
 - pi/K/p separation
- Better DAQ efficiency under higher photon beam rate
 - Electron veto on trigger level
- Beam position monitor
- Replacement of data acquisition system

- Kaon identification
 - Replacement of Inner/Outer Hodoscopes is on-going
 - Scintillator + SiPM
 - Expected intrinsic time resolution: ~100 ps \rightarrow TOF resolution: < 150 ps
 - Current TOF resolution: < 270 ps
 - Developed by T. Fuwara and reported by his master's thesis
 - Charger information will be taken as Time-over-threshold by TDC module
 - Outer Hodoscope will be common for FSI and lifetime experiment

Outer hodoscope design Picture from T.Fujiwara's JPS talk

• Better DAQ efficiency under higher photon beam rate

- Rejection of e^+e^- event on the trigger level
- Aerogel Cherenkov Electron Veto Counter
 - Feasibility study is done
 - Aerogel
 - n = 1.01: only electron emits the Cherenkov light in *p*<1.GeV/*c*
 - 3 x 4 x 6 cm³ to locate between two chambers
 - Micro-Channel Plate PMT as photon sensor
 - almost no thermal noise
 - Scintillation light from s reflector (Teflon) is negligible
 - Developed by K. Tachibana and will be summarized on his master's thesis

Figure from K. Tachibana's CLUSHIQ2022 talk

- Beam position monitor
 - Scintillation fiber + SiPM (MPPC)
 - Real time monitoring
 - Developed by R. Kino and will be reported in her master's thesis

Plan of data acquisition system

- Trigger construction
 - NIM modules to FPGA modules
 - Logic width and delay will be adjusted on the FPGA
- Wiring in the 2nd experimental hall
 - Current system: logic signals are sending to counting room
 - less delay time (experimental hall \leftrightarrow counting room: ~1 µs)

No QDC module

- Energy deposit (Charge) information will be record as logic width (Time-Over-Threshold) by TDC module
- No decay cable for QDC gate

Summary

- NKS2 experiment at ELPH
 - Photon tagger + magnetic spectrometer
 - Physics topics
 - Strangeness nuclear and hadron physics
- Recent results and future program is introduced
- The upgrade plan for the future program
 - Detector R&D
 - TOF counter
 - Electron veto
 - Beam position monitor
 - DAQ system
 - Discussion is on-going
 - Trial of constructing the tigger by FPGA for Tagger