

³H(e, e'K⁺)X反応における <u>An相互作用の研究</u>

K. Itabashi

ハドロン分光に迫る反応と構造の物理

Contents

- Physics Motivation
- Experimental setup
- ${}^{3}\mathrm{H}(e, e'K^{+})X$ missing mass spectrum
- Simulation of the Λn FSI
- Study of the Λn FSI in the ${}^{3}H(e, e'K^{+})X$ reaction

ハドロン分光に迫る反応と構造の物理

December 06, 2022

Experimental approach for the AN interaction

The ΛN interaction was known by the ΛN scattering data and the Λ hypernuclear spectroscopy.

Scattering experiment

 Major experimental method for deducing the interactions.

<u>Λ hypernuclear spectroscopy</u>

- By comparing with theoretical models
- \rightarrow Understanding the effective ΛN interaction

 $\begin{array}{l} \Lambda p \text{ scattering} \\ \rightarrow \text{Limited data} \\ \Lambda n \text{ scattering} \\ \rightarrow \text{No data (Not realistic)} \end{array}$

 $nn\Lambda$ is pure Λn system \rightarrow It is good system to study the Λn interaction.

3

ハドロン分光に迫る反応と構造の物理

The nnΛ state problem

Experimental suggestion

HypHI Collaboration at GSI reported structure that may be interpreted

as a bound state of $nn\Lambda$ system.

C. Rappold *et al.,* (HypHI Collaboration) Phys. Rev. C 88 041001 (2013)

HIEI2022

Theoretical suggestion

- Theoretical calculation with Gaussian expansion method Ref.) E. Hiyama et al., Phys. Rev. C 89, 061302 (2014). Bound state of the $nn\Lambda$ is not realistic
 - Faddeev calculation with S-wave separable potentials Ref.) I.R. Afnan et al., Phys. Rev. C, 92 054608 (2015). $nn\Lambda$ could be resonance state when <u>a Λn potential is 5% deeper</u>

than Λp potential (s > 1.05).

Existence of the $nn\Lambda$ is not established \rightarrow Need more precise spectroscopy measurement We performed $nn\Lambda$ experiment at Jeffreson Lab (JLab)

March 22nd, 2022

High resolution spectroscopy at JLab

$(e, e'K^+)$ reaction

 $(e \rightarrow e' + \gamma^*)$ to produce Λ in the nucleus. The missing mass of Λ hypernuclei is

$$M_X = \sqrt{(E_e + m_T - E_{e'} - E_K)^2 - (\overrightarrow{p_e} - \overrightarrow{p_{e'}} - \overrightarrow{p_K})^2}$$

 $^{A}Z(e,e'K^{+})^{A}_{\Lambda}(Z-1)$

An experiment in the $(e, e'K^+)$ reaction can achievable high energy resolution (a few MeV FWHM) and precision (a few hundreds keV) due to use

ハドロン分光に迫る反応と構造の物理

December 06, 2022

Study of the Λn interaction from (e, e'K⁺) reaction at JLab

There are two ways to study the Λn interaction from the $nn\Lambda$ system.

- 1. Analysis of $nn\Lambda$ peak (if the $nn\Lambda$ peak exists)
- **2.** Analysis of ΛQF distribution

Iraj R. Afnan *et al.*, Phys. Rev. C 92, 054608 (2015).

HYP2022

June 30, 2022 6

Contents

- Physics Motivation
- Experimental setup
- ${}^{3}\mathrm{H}(e, e'K^{+})X$ missing mass spectrum
- Simulation of the Λn FSI
- Study of the Λn FSI in the ${}^{3}H(e, e'K^{+})X$ reaction

ハドロン分光に迫る反応と構造の物理

nnA experiment at Jefferson Lab

The $nn\Lambda$ search experiment (E12-17-003) was performed at JLab Hall A (2018).

- Two high resolution spectrometers (HRSs) $(\Delta p/p \sim 2.0 \times 10^{-4})$
- Tritium gas target (84.8 mg/cm²)

ハドロン分光に迫る反応と構造の物理

December 06, 2022

Contents

- Physics Motivation
- Experimental setup
- ${}^{3}\mathrm{H}(e, e'K^{+})X$ missing mass spectrum
- Simulation of the Λn FSI
- Study of the Λn FSI in the ${}^{3}H(e, e'K^{+})X$ reaction

ハドロン分光に迫る反応と構造の物理

December 06, 2022

Cross section of missing mass in the ${}^{3}H(e, e'K^{+})X$ reaction

*1 : JLab Hall A/C standard Monte Carlo Simulation Including fermi momentum, kaon decay, radiative correlations

We study following physics from the ${}^{3}\text{H}(e, e'K^{+})X$ spectrum

- Upper limit of the $nn\Lambda$ cross-section
- Spectroscopic study of the ΣNN state
- Study of the Λn final state interaction

ハドロン分光に迫る反応と構造の物理

December 06, 2022

Cross section of missing mass in the ${}^{3}H(e, e'K^{+})X$ reaction

^{*1} : JLab Hall A/C standard Monte Carlo Simulation Including fermi momentum, kaon decay, radiative correlations

We study following physics from the ${}^{3}H(e, e'K^{+})X$ spectrum

- Upper limit of the $nn\Lambda$ cross-section
- Spectroscopic study of the ΣNN state
- Study of the Λn final state interaction

ハドロン分光に迫る反応と構造の物理

Cross section of missing mass in the ${}^{3}H(e, e'K^{+})X$ reaction

^{*1} : JLab Hall A/C standard Monte Carlo Simulation Including fermi momentum, kaon decay, radiative correlations

We study following physics from the ${}^{3}H(e, e'K^{+})X$ spectrum

- Upper limit of the $nn\Lambda$ cross-section
- Spectroscopic study of the ΣNN state

Study of the Λn final state interaction

There are structure around ΣNN threshold Study of the ΣNN state \rightarrow Phys. Rev. C 105, L051001 (2022).

17

ハドロン分光に迫る反応と構造の物理

Cross section of missing mass in the ${}^{3}H(e, e'K^{+})X$ reaction

^{*1} : JLab Hall A/C standard Monte Carlo Simulation Including fermi momentum, kaon decay, radiative correlations

We study following physics from the ${}^{3}H(e, e'K^{+})X$ spectrum

- Upper limit of the *nn*A cross-section
 - Spectroscopic study of the ΣNN state
 - Study of the Λn final state interaction

Around 10 MeV region, there are excessed events even considering $nn\Lambda$ structure $(-B_{\Lambda} \sim 0 \text{ MeV})$.

 \rightarrow Expected to be produced by the Λn FSI

ハドロン分光に迫る反応と構造の物理

Contents

- Physics Motivation
- Experimental setup
- ³H(e, e'K⁺)X missing mass spectrum
- Simulation of the Λn FSI
- Study of the Λn FSI in the ${}^{3}H(e, e'K^{+})X$ reaction

ハドロン分光に迫る反応と構造の物理

December 06, 2022

Final State Interaction (FSI)

Final state interaction (FSI) is reaction between a recoil Λ and a nucleon

within a target (two-body (ΛN) scattering).

ハドロン分光に迫る反応と構造の物理

December 06, 2022

Calculation of the An final state interaction

FSI can be written with influence factor $I(k_{rel})$ as following

In the ERA ($k \cot \delta = -1/a + 1/2r_ek^2$), the Jost function is written with scattering length (a) and effective range (r_e) as : $J_{l=0}(k_{rel}) = \frac{k_{rel} - i\beta}{k_{rel} - i\alpha}$

$$\frac{1}{2}\boldsymbol{r_e}(\alpha-\beta)=1,\ \frac{1}{2}\boldsymbol{r_e}\alpha\beta=-\frac{1}{a}$$

ハドロン分光に迫る反応と構造の物理 December 06, 2022 16

 $\left(\frac{d\sigma}{d\Omega}\right)_{\rm FSI} = \left|\frac{\psi(kr+\delta)}{\psi(kr)}\right|^2 \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o\,FSI} = I(k_{rel}) \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o\,FSI} = \frac{1}{|J_l(k_{rel})|^2} \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o\,FSI}$

<u>Simulation of the Λn FSI</u>

 $I(p_{\Lambda n})$ is calculated with Jost function $(I(p_{\Lambda n}) = 1/|J_{l=0}(p_{\Lambda n})|^2)$

 $J_{l=0}(p_{rel}, r_e, a) = \frac{p_{rel} - i\beta}{p_{rel} - i\alpha}, \ \frac{1}{2}r_e(\alpha - \beta) = 1, \ \frac{1}{2}r_e\alpha\beta = -\frac{1}{a}$

ハドロン分光に迫る反応と構造の物理

December 06, 2022

 $P_p(\vec{p}_p, E_p)$

 n_1

 $P_{nn}(-\vec{p}_p, E_{nn}^*)$

Missing mass spectrum including An FSI by SIMC

Missing mass with An FSI is written as $\left(\frac{d\sigma}{d\Omega}\right)_{FSI} = I(k_{rel}) \left(\frac{d\sigma}{d\Omega}\right)_{W/0 FSI}$ • $\left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o\ FSI}$: Given by SIMC (w/o FSI) • $I(k_{rel})$: Calculated with Jost function Red : w/FSI (NSC97f) Green : w/o FSI (SIMC) nfluence factor (0.25¹S₀ + 0.75³S₁) w/. FSI Julich A w/. FSI Julich B $I(p_{\Lambda n})$ w/. FSI NLO13(600) Successfully reproduced w/. FSI NLO13(650) the enhancement w/. FSI NLO19(600) w/. FSI NLO19(650) Calculating w/. FSI NSC97f $\vec{p}_{\Lambda n}$ and $I(\vec{p}_{\Lambda n})$ 3 H(e, e'K⁺)X (Simulation) each event 20 50 0 10 30 40 60 250 300 150 200 350 400 450 50 P., [MeV/c] 100 -B_A [MeV]

ハドロン分光に迫る反応と構造の物理

December 06, 2022

Contents

- Physics Motivation
- Experimental setup
- ³H(*e*, *e'K*⁺)X missing mass spectrum
- Simulation of the Λn FSI
- Study of the Λn FSI in the ${}^{3}H(e, e'K^{+})X$ reaction

December 06, 2022

19

- Λn model dependence
- Search for the best fit parameters (a,r)

ハドロン分光に迫る反応と構造の物理

Enhancement structure in the ${}^{3}H(e, e'K^{+})X$ missing mass

There are two structures
$$(0 < -B_{\Lambda} < 60 \text{ MeV})$$

 $-B_{\Lambda} \sim 0 \text{ MeV}$: Not reproduced by Λn FSI
 $-B_{\Lambda} \sim 20 \text{ MeV}$: Produced by Λn FSI

The structure of $-B_{\Lambda} \sim 0$ MeV was reproduced by convolution integration function $(f_{BW})^{*1}$ (Breit-Wigner * Response functions)

^{*1} S.N. Suzuki et al., Prog. Theor. Exp. Phys. 2022 013D01.

20

ハドロン分光に迫る反応と構造の物理

Chi-square fitting

ハドロン分光に迫る反応と構造の物理

Fitting results of the SIMC spectra with An FSI

dơ/dΩ _K [(nb/sr) / 1.0MeV] Exp. data w/. FSI Julich A w/. FSI Julich B w/. FSI NLO13(600) 15 w/. FSI NLO13(650) w/. FSI NLO19(600) w/. FSI NLO19(650) w/. FSI NSC97f 20 40 -**B**, [MeV]

 $0 \leq -B_{\Lambda} \leq 60 \text{ MeV}$

SIMC spectra with Λn FSI were scaled in the region above 60 MeV (FSI ignorable range).

The goodness of fit of the SIMC spectra in each Λn potential model was evaluated by chisquares with a range of $0 \leq -B_{\Lambda} \leq 60 \text{ MeV}$.

Λn Potential	Reduced chi-square (χ^2/ndf)	$-B_{\Lambda} \sim 0$ MeV structure [nb/sr]
w/o FSI (w/o nnL peak)	1.24	0.0
w/o FSI	1.09	23.0
Jülich A	1.40	1.1
Jülich B	1.15	5.5
NSC97f	1.05	8.0
NLO13(600)	1.16	5.1
NLO13(650)	1.17	4.7
NLO19(600)	1.22	4.0
NLO19(650)		4.0
	Pretim	Indry

ハドロン分光に迫る反応と構造の物理

December 06, 2022

Contents

- Physics Motivation
- Experimental setup
- ${}^{3}\mathrm{H}(e, e'K^{+})X$ missing mass spectrum
- Simulation of the Λn FSI
- Study of the Λn FSI in the ${}^{3}H(e, e'K^{+})X$ reaction
 - Λn model dependence
 - Search for the best fit parameters (a,r)

ハドロン分光に迫る反応と構造の物理

December 06, 2022

Search for the best An potential parameters

 Λn FSI : calculated by Jost function with the (a, r) potential parameters

 \rightarrow Study of the (a, r)-dependence of χ^2 (Search for the best (a, r) parameters)

Using two parameters (\bar{a}, \bar{r}) : $\bar{a} \equiv a_s = a_t$, $\bar{r} \equiv r_s = r_t$

$$\left(\frac{d\sigma}{d\Omega}\right)_{\rm FSI} = \left(\left|\frac{1}{J(k_{\rm rel})}\right|^2\right) \left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o \ FSI}$$

Minimum chi-square χ^2_{\min} is 59 at $(\bar{a}, \bar{r}) = (-2.6, 5.0)$ fm. Black solid line is the contour line at $\chi^2_{\min} + 1$.

 \rightarrow It indicates statistical err.

Assuming $\bar{a} = -2.6$ fm (Preliminary) $3.8 < \bar{r} < 5.3$ fm

[1] Eur. Phys. J. A 21, 313-321 (2004).

24

ハドロン分光に迫る反応と構造の物理

- AN final state interaction can be studied by the shaping analysis of the $\Lambda-\text{QF}$ distribution.
- An FSI was investigated from the Λ –QF productions in the ${}^{3}\text{H}(e, e'K^{+})X$ reaction.
- Using the Jost function, the potential parameters of Λn potentials (a, r) were successful to be restricted by the chi-square fitting.
- Assuming $\bar{a} = -2.6$ fm (Preliminary) $\bar{r} = 5.0^{+1.3}_{-1.2}$ (stat.) fm

ハドロン分光に迫る反応と構造の物理 De

December 06, 2022

ハドロン分光に迫る反応と構造の物理 December 06, 2022 26

nnA Experiment at JLab

80 $nn\Lambda$ production reaction Counts / (2.8 MeV) 60 Resolution Reaction Target 40 $(\pi^+, K^+), (K^-, \pi^-)$ nnn 20 Δ Heavy ion some 2.98 3 ³H $(e, e'K^{+})$

C. Rappold *et al.,* (HypHI Collaboration) Phys. Rev. C 88 041001 (2013)

 $t + \pi^{-}$

• GSI measured invariant mass and lifetime of $t + \pi^-$ in ${}^{6}\text{Li} + {}^{12}\text{C}$ reaction at 2A GeV

Not enough peak significance of $nn\Lambda$ and enough mass resolution to study Λn interaction [1] T. Gogami, Doctoral thesis (2014).

• $(e, e'K^+)$ reaction enable to achieve high resolution $(-B_{\Lambda} \sim 0.5 \text{ MeV in FWHM})$ [1]

Need radioactive material of ³H for the target

ハドロン分光に迫る反応と構造の物理 December 06, 2022 27

nnA Experiment at JLab

$nn\Lambda$ production reaction

Reaction	Target	Resolution
$(\pi^+, K^+), (K^-, \pi^-)$	nnn	
Heavy ion	some	Δ
$(e, e'K^+)$	³ Н	0

December 06, 2022

28

Jefferson Lab (JLab) meets the requirements

- High quality electron beam accelerator (CEBAF)
- Able to handle tritium target (Tritium Campaign 2017-2018)

 $(e, e'K^+)$ reaction enable to achieve high resolution $(-B_{\Lambda} \sim 0.5 \text{ MeV in FWHM})$ [1]

Need radioactive material of ³H for the target

ハドロン分光に迫る反応と構造の物理

<u>Calculation of the Λ momentum (p_{Λ}) </u>

 Λ momentum (\vec{p}_{Λ}) :

$$\vec{p}_{\Lambda} = \vec{p}_p + \vec{p}_{\gamma^*} - \vec{p}_K$$

 $\vec{p}_{K} = 1800 \pm 80 \text{ MeV/}c$
 $\vec{p}_{\gamma^*} = 2100 \pm 100 \text{ MeV/}c$

 $|\vec{p}_p|$ was given by Fermi momentum probability.

 (θ_p, ϕ_p) was generated by a spherical uniform distribution.

ハドロン分光に迫る反応と構造の物理

December 06, 2022

100 MeV/c

Estimation of each neutron momentum (\vec{p}_n)

 $P_p(\vec{p}_p, E_p)$

 $P_{nn}(-\vec{p}_p, E_{nn}^*)$

 $\vec{p}_{nn}^{rel} = \frac{\vec{p}_{n1} - \vec{p}_{n2}}{2}$

Stopped target (³H) $\rightarrow \vec{p}_p + \vec{p}_{n1} + \vec{p}_{n2} = 0$

with nn relative momentum $\vec{p}_{nn}^{
m rel}$, a neutron momentum $\left(\vec{p}_{n1(n2)}\right)$ were

 $\vec{p}_{n1(n2)} = -\frac{1}{2} \vec{p}_p + \vec{p}_{nn}^{rel}$

$$\left|\vec{p}_{n1(n2)}\right| = \sqrt{\left|\vec{p}_{nn}^{rel}\right|^2 + \frac{\left|\vec{p}_p\right|^2}{4} + \frac{\left|\vec{p}_p\right|^2}{4}} + \frac{\left|\vec{p}_p\right|\left|\vec{p}_{nn}^{rel}\right|\cos\theta}{\text{unknown}}$$

 θ : spherical uniform, \vec{p}_p : Fermi momentum

Each neutron momentum cannot be determined. $\rightarrow \vec{p}_{nn}^{rel}$ is given by ³H spectral function (SF)

ハドロン分光に迫る反応と構造の物理 December 06, 2022 30

Spectral functions of three body system

One of the nucleon momentum in ³H is given by spectral function (SF)

However, spectral function of ³H could not reproduced

 \rightarrow Using SF of ³He assuming charge symmetry

Mirror system

Jefferson Lab (JLab)

Continuous Electron Beam Accelerator Facility (CEBAF) Jefferson Lab (JLab) has continuous electron beam accelerator facility (CEBAF) which provides us high current and quality electron beam.

CEBAF Main Specifications

- Max Beam Energy : 12 GeV (6 paths)
- Max beam current : 85 μA
- Beam spread ($\Delta E/E$): 1.8 × 10⁻⁴ (FWHM)

ハドロン分光に迫る反応と構造の物理

December 06, 2022

Missing mass spectra with Λn FSI

Experimental data (${}^{3}H(e, e'K^{+})X$ missing mass spectrum)

- Excess events around $nn\Lambda$ mass threshold $(-B_{\Lambda} \sim 0 \text{ MeV})$
 - \rightarrow Assuming resonance state of $nn\Lambda$ (Γ , $-B_{\Lambda}$) = (4.7,0.55) MeV
- Including Λn FSI effects ($0 < -B_{\Lambda} < 60$ MeV)

```
Experimental data was fitted with chi-square as

\chi^{2} = \sum_{i} \frac{\left(y_{\text{data}}^{i} - w_{FSI} \cdot y_{FSI}^{i} - w_{nn\Lambda} \cdot y_{nn\Lambda}^{i}\right)^{2}}{\sigma_{\text{data}}^{i}} \quad (w_{FSI}, w_{nn\Lambda} \text{ are scaling factors})
```

Missing mass spectra with FSI :

- Succeeded in reproducing enhancement structure ($0 \le -B_{\Lambda} \le 60 \text{ MeV}$)
- Better agreement with the experimental data

33

ハドロン分光に迫る反応と構造の物理

The scaling of MC spectra

The enhancement by Λn FSI

Low mass region ($-B_{\Lambda} < 60 \text{ MeV}$) \rightarrow Effective

ハドロン分光に迫る反応と構造の物理

December 06, 2022

Exp. data w/o FSI

v/. FSI Julich A

w/. FSI Julich B

w/. FSI NLO13(600)

The scaling of MC spectra

ハドロン分光に迫る反応と構造の物理

December 06, 2022 35

Cross section of missing mass in the ${}^{3}H(e, e'K^{+})X$ reaction

 $nn\Lambda$ mass threshold $B_{\Lambda} \sim 0 \text{ MeV}$: $nn\Lambda$ resonance?? do/dΩ_K [(nb/sr) / 2MeV] 30 Exp. data Upper limit study of $nn\Lambda$ (Published) MC (w/o. FSI) K.N. Suzuki et al., PTEP 2022, 013D01 Not enough 20 X 14 W 12 (I $(-B_{\Lambda}, \Gamma) = (0.25, 0.8) \text{ MeV}$ significance [(MeV) 2 12 (Breit-Wigner*Response $d\sigma/d\Omega (nb/sr/2)$ Belyaev 10 Schäfer 2 3 4 $-B_{\Lambda}$ (MeV) $10 < -B_{\Lambda} < 60 \text{ MeV}$ Due to Λn final state interaction (Λn FSI) 50 100 150 $nn\Lambda??$ $-B_{\Lambda}$ [MeV]

ハドロン分光に迫る反応と構造の物理

December 06, 2022

36

*1 : JLab Hall A/C standard Monte Carlo Simulation

Including fermi momentum, kaon decay,

radiative correlations

Target system in nnA expereiment

This picture was taken in vacuum chamber

Tritium decays to herium3 with half-lifetime at 12.32 \pm 0.02 years (³H \rightarrow ³He + e⁻ + $\overline{\nu_e}$).

ハドロン分光に迫る反応と構造の物理

December 06, 2022

The scaling of MC spectra

The enhancement by Λn FSI

Low mass region $(-B_{\Lambda} < 60 \text{ MeV}) \rightarrow \text{Effective}$ High mass region $(-B_{\Lambda} > 60 \text{ MeV}) \rightarrow \text{Ignorable}$

$$\begin{split} f_{\rm FSI} \text{ was determined by the value with the smallest} \\ \text{chi-square within } (60 \leq -B_{\Lambda} \leq 140 \text{ MeV}) \\ \chi^2 &= \sum_{i}^{N_{\rm bin}} \frac{\left(y_{\rm data}^i - f_{\rm FSI} \cdot I(k_{rel}^i) y_{\rm MC}^i\right)^2}{\sigma_{\rm data}^i} \end{split}$$

ハドロン分光に迫る反応と構造の物理

December 06, 2022

<u>Simulation of the Λn FSI</u>

Missing mass with An FSI is written as $\left(\frac{d\sigma}{d\Omega}\right)_{\text{FSI}} = I(k_{rel})\left(\frac{d\sigma}{d\Omega}\right)_{\text{w/o FSI}}$

- $\left(\frac{d\sigma}{d\Omega}\right)_{\rm w/o\ FSI}$: Given by SIMC (w/o FSI)
- $I(k_{rel})$: Calculated with Jost function (free p)

ハドロン分光に迫る反応と構造の物理

December 06, 2022