ノックアウト反応で探る原子核クラスター構造 Nulcear cluster structure probed by knockout reaction

Kazuki Yoshida
December 6， 2022
Japan Atomic Energy Agency

Various aspects of nucleus

Liquid drop (fission/fusion)
single-particle orbital in the nuclear mean field

Cluster structure

Shell structure and Magic number

Nucleon single-particle motion in the mean field

Shell orbit and magic numbers: ${ }^{40}$ Ca case

- Nucleons (protons and neutrons) occupy their single-particle orbits in the mean-filed potential
- Magic numbers (shell closure) 2, 8, 20, 28, 50, 82, 126 appear, similarly as in electron orbitals.

α-clustering of nuclei

Few body aspect of nucleon many body system

- Independent nucleon picture
- Bound in a single-particle orbital
- Mean-filed potential made by all nucleons

- Two or more subunits
- Nucleons are tightly bound to form a cluster
- Coupling between clusters are weak like a molecule

Note: These two states are not orthogonal, they overlap [1]

[^0]
Few body aspect of nucleon many body system

Single-particle

Clusters

Single-particle and cluster orbitals are characterized by their radial (n), orbital (ℓ), spin (s) and total $j=\ell+s$ quantum numbers. Its amplitude

$$
\varphi_{n \ell j}(R)=\left\langle\Phi_{\mathrm{B}}\right| \hat{a}_{n \ell j}(R)\left|\Phi_{\mathrm{A}}\right\rangle=\left\langle\left[\Phi_{\mathrm{B}} \otimes \phi(R)\right]_{n l j} \mid \Phi_{\mathrm{A}}\right\rangle
$$

and the spectroscopic factor

$$
\left.S_{n \ell j}=\left|\left\langle\Phi_{\mathrm{B}}\right| \hat{a}_{n \ell j}\right| \Phi_{\mathrm{A}}\right\rangle\left.\right|^{2}
$$

exhibit the few-body likeness of the system.

Particle knockout reaction

- One-step direct reaction with hundreds MeV incident energy
- Particle (nucleon or α) is knocked out by a impulse collision
- Reaction probability (cross section) is proportional to the particle probability
- Particle component only in the ground state of the target is probed
- Little contribution from excited (resonance) states

Knockout cross section

$$
d \sigma=\frac{(2 \pi)^{4}}{\hbar v} d \boldsymbol{K}_{1} d \boldsymbol{K}_{2} d \boldsymbol{K}_{\mathrm{B}} \delta\left(\boldsymbol{K}_{i}-\boldsymbol{K}_{f}\right) \delta\left(E_{i}-E_{f}\right) \quad \underset{\text { conservation law }}{\text { Transition amp. }} \quad \times|T|^{2}
$$

Knockout cross section (Triple differential cross section)

$$
\frac{d \sigma}{d E_{1} d \Omega_{1} d \Omega_{2}}=\frac{(2 \pi)^{4}}{\hbar v} F_{\text {kin }}|T|^{2}
$$

$F_{\text {kin }}$: Kinematical factor

$$
F_{\text {kin }}=\frac{E_{1} K_{1} E_{2} K_{2}}{(\hbar c)^{4}}\left[1+\frac{E_{2}}{E_{\mathrm{B}}}+\frac{E_{2}}{E_{\mathrm{B}}} \frac{\left(\boldsymbol{K}_{1}-\boldsymbol{K}_{0}-\boldsymbol{K}_{\mathrm{A}}\right) \cdot \boldsymbol{K}_{2}}{\boldsymbol{K}_{2}^{2}}\right]^{-1}
$$

Reaction model: Distorted Wave Impulse Approximation

Transition matrix

$$
T=\left\langle\chi_{1} \chi_{2} \Phi_{\mathrm{C}} \Phi_{\mathrm{B}}\right| t_{p \mathrm{C}}\left|\chi_{0} \Phi_{\mathrm{A}}\right\rangle=\left\langle\chi_{1} \chi_{2}\right| t_{p \mathrm{C}}\left|\chi_{0} \varphi_{\mathrm{C}}\right\rangle
$$

χ_{i} : Distorted waves under optical potentials
$t_{p \mathrm{C}}: p$-C effective interaction in free space
φ_{C} : Single-particle or cluster wave function $\left\langle\left[\Phi_{\mathrm{C}} \otimes \Phi_{\mathrm{B}}\right] \mid \Phi_{\mathrm{A}}\right\rangle$
Knockout cross section (Triple differential cross section)

$$
\frac{d^{3} \sigma}{d E_{1} d \Omega_{1} d \Omega_{2}} \propto|T|^{2}
$$

Plane-wave limit (PWIA)

$$
\begin{aligned}
T & \approx\left\langle\chi_{1} \chi_{2}\right| t_{p \mathrm{C}}\left|\chi_{0} \varphi_{\mathrm{C}}\right\rangle \\
\xrightarrow[\text { (P.W.) }]{\longrightarrow} & \left\langle\boldsymbol{\kappa}^{\prime}\right| t_{p \mathrm{C}}|\boldsymbol{\kappa}\rangle_{\boldsymbol{s}}\left\langle\boldsymbol{K}_{1}+\boldsymbol{K}_{2}-\boldsymbol{K}_{0} \mid \varphi_{\mathrm{C}}\right\rangle_{\boldsymbol{R}} \\
& =\left\langle\boldsymbol{\kappa}^{\prime}\right| t_{p \mathrm{C}}|\boldsymbol{\kappa}\rangle_{s}\left\langle-\boldsymbol{K}_{\mathrm{B}} \mid \varphi_{\mathrm{C}}\right\rangle_{\boldsymbol{R}} \\
& \left.=\left\langle\boldsymbol{\kappa}^{\prime}\right| t_{p \mathrm{C}}|\boldsymbol{\kappa}\rangle_{\boldsymbol{s}} \quad \tilde{\varphi}_{\mathrm{B}}\left(\boldsymbol{K}_{C}\right) \quad \boldsymbol{K}_{0}-\boldsymbol{K}_{1}-\boldsymbol{K}_{2}\right) \\
& p \text {-C collision Structure }
\end{aligned}
$$

Knockout cross section

$$
|T|^{2} \rightarrow \frac{d \sigma_{p C}}{d \Omega_{p C}}\left|\tilde{\varphi}_{C}\left(\boldsymbol{k}_{C}\right)\right|^{2}
$$

Single-particle orbital and shape of cross section

Recoil momentum $p_{\mathrm{B}}\left(=p_{3}\right)(\mathrm{MeV} / \mathrm{c})$

Figs.: T. Wakasa et al., Progress in Particle and Nuclear Physics 96, 32 (2017)

Nuclear shell and magic numbers

Nuclear shell and its evolution

Theoretical prediction: absence of the protons in the $1 f_{7 / 2}$ orbit changes the neutron $1 f_{5 / 2}$ orbit due to the lack of the tensor force

Figure from T. Otsuka and Y. Tsunoda
J. Phys. G: Nucl. Part. Phys. 43024009 (2016).

Which orbit do neutrons occupy in ${ }^{54} \mathrm{Ca}(Z=20, N=34)$ system?

Shell Evolution And Search for Two-plus energies At RIBF

Neutron knockout reaction from ${ }^{54} \mathrm{Ca}$

$P_{\|}$: Longitudinal (beam direction) component of the momentum \boldsymbol{Q}

- Neutron is knocked out mostly from the p-orbit
- Six neutrons occupy the p-orbit about 85%
- f-orbit is far above p-orbit, making the $N=34$ shell gap
[3] S. Chen et al., Phys. Rev. Lett. 123, 142501 (2019).

α clustering in light nuclei

- Strong nucleon correlations makes a cluster
- Weak coupling between clusters
- What about the ground state?

Ikeda diagram [4]

[^1]
Search for α clustering in the ground state

Kinematical setup

Targets

- ${ }^{16} \mathrm{O},{ }^{20} \mathrm{Ne},{ }^{24} \mathrm{Mg},{ }^{28} \mathrm{Si},{ }^{32} \mathrm{~S}$, ${ }^{40} \mathrm{Ca},{ }^{48} \mathrm{Ti},{ }^{54} \mathrm{Fe},{ }^{66} \mathrm{Zn}$

[^2]
$\alpha+{ }^{16} \mathrm{O}$ cluster state in ${ }^{20} \mathrm{Ne}_{g . s .}$.

Carey et al. (1984) [5].

- α cluster wave function by a Woods-Saxon potential
- $S_{\alpha}=0.54$ (exp. + reaction)
- $S_{\alpha}=0.18-0.23$ (Structure theory [6-8])

Inconsistent by a factor of two
K. Yoshida et al. (2019) [9].

- DWIA + AMD wave function [10]

- $S_{\alpha}=0.26$ (Consistent)
[5] T. A. Carey et al., Phys. Rev. C 29, 1273 (1984). [6] W. Chung et al., Physics Letters B 79, 381 (1978). [7] J. Draayer, Nuclear Physics A 237, 157 (1975). [8] K. Hecht and D. Braunschweig, Nuclear Physics A 244, 365 (1975). [9] K. Yoshida et al., Phys. Rev. C 100, 044601 (2019). [10] Y. Chiba and M. Kimura, Prog. Theor. Exp. Phys. 2017, 053D01 (2017).

Peripherality of reaction and surface α amplitude

Knockout cross section

- Pauli principle is taken into account within the Antisymmetrized Molecular Dynamics (AMD) framework
- Both wave functions agree on the surface
- Knockout cross section is determined by the surface α amplitude, not the whole region (S-factor).

${ }^{16} \mathrm{O}(p, p \alpha){ }^{12} \mathrm{C}$ reaction

Cluster wave function

Knockout cross section

- The 5-body model [11] ($S_{\alpha}=0.105$) amplitude reproduces the data. Significant difference between the 5BM and OCM [12,13] ($S_{\alpha}=0.29$)
- Consistent with the α-transfer reaction analysis [14]
[11] W. Horiuchi and Y. Suzuki, Phys. Rev. C 89, 011304(R) (2014). [12] Y. Suzuki, Prog. Theor. Phys. 55, 1751 (1976). [13] Y. Suzuki, Prog. Theor. Phys. 56, 111 (1976). [14] T. Fukui et al., Nuclear Physics A 983, 38 (2019).

What do we really know from reaction observables?

A test using phenomenological cluster w.fn. (Woods-Saxon pot.)

- Cross section put a strong constraint on the surface amplitude
- This is because of the absorption effect of the reaction
- Short mean free path of α
- Loss of probability flux to the Q-space of the Feshbach projection

α particle on Sn surface

α particle on Sn surface

α particle on Sn surface

Neutron skin thickness of heavy nuclei with α-particle correlations and the slope of the nuclear symmetry energy

S. Typel
GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany
(Received 12 March 2014; revised manuscript received 23 May 2014; published 30 June 2014)

α particle on Sn surface

α particle number

- A theoretical prediction of the α density distribution on Sn isotopes by the generalized relativistic mean-field model with explicit α degrees of freedom.
- The α density decreases as neutron number increases.

α particle on Sn surface

Neutron skin thickness of heavy nuclei with α-particle correlations and the slope of the nuclear symmetry energy
S. Typel

GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, D-64291 Darmstadt, Germany
(Received 12 March 2014; revised manuscript received 23 May 2014; published 30 June 2014)

In the end of Summary
effects into account, have to be performed in the future. The systematic variation of α-particles abundancies on the nuclear surface should be studied experimentally, e.g., by quasifree ($p, p \alpha$) reactions [29].

α-knockout experiment from Sn isotopes

Formation of α clusters in dilute neutron-rich matter

Junki Tanaka ${ }^{1,2,3 *}$, Zaihong Yang ${ }^{3,4 *}$, Stefan Typel ${ }^{1,2}$, Satoshi Adachi ${ }^{4}$, Shiwei Bai ${ }^{5}$, Patrik van Beek ${ }^{1}$, Didier Beaumel ${ }^{6}$, Yuki Fujikawa ${ }^{7}$, Jiaxing Han ${ }^{5}$, Sebastian Heil ${ }^{1}$, Siwei Huang ${ }^{5}$, Azusa Inoue ${ }^{4}$, Ying Jiang ${ }^{5}$, Marco Knösel ${ }^{1}$, Nobuyuki Kobayashi ${ }^{4}$, Yuki Kubota ${ }^{3}$, Wei Liu ${ }^{5}$, Jianling Lou ${ }^{5}$, Yukie Maeda ${ }^{8}$, Yohei Matsuda ${ }^{9}$, Kenjiro Miki ${ }^{10}$, Shoken Nakamura ${ }^{4}$, Kazuyuki Ogata ${ }^{4,11}$, Valerii Panin ${ }^{3}$, Heiko Scheit ${ }^{1}$, Fabia Schindler ${ }^{1}$, Philipp Schrock ${ }^{12}$, Dmytro Symochko ${ }^{1}$, Atsushi Tamii ${ }^{4}$, Tomohiro Uesaka ${ }^{3}$, Vadim Wagner ${ }^{1}$, Kazuki Yoshida ${ }^{13}$, Juzo Zenihiro ${ }^{3,7}$, Thomas Aumann ${ }^{1,2,14}$

[15] J. Tanaka et al., Science 371, 260 (2021).

α-knockout experiment from Sn isotopes

- The experiment was performed at RCNP, Osaka Univ.
- Theoretical α-knockout cross sections are obtained by introducing a scaling factor of 0.148 for the imaginary potential depth (for all isotopes).
- An isotopic trend of the cross sections is well reproduced by the theoretical calculation using predicted α-particle density distribution.

Heavy and unstable: α formation on decaying nuclei

α-decay lifetime and its width (independent of channel radius R)

$$
\begin{aligned}
T_{1 / 2} & =\frac{\hbar \ln 2}{\Gamma_{l}}, \\
\Gamma & =2 \frac{k R}{F^{2}(k R)+G^{2}(k R)} \\
\text { Penetrability } & \frac{\hbar^{2}}{2 \mu R}|R F(R)|^{2} \\
& =2 P(R) \gamma^{2}(R)
\end{aligned}
$$

Heavy and unstable: α formation on decaying nuclei

$F\left(R ;{ }^{212} \mathrm{Po}\right)=\int d \boldsymbol{R} d \xi_{\alpha} \phi_{\alpha}\left(\xi_{\alpha}\right) \Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2} ;{ }^{210} \mathrm{~Pb}\right) \Psi\left(\boldsymbol{r}_{3}, \boldsymbol{r}_{4} ;{ }^{210} \mathrm{Po}\right)$
[16] C. Qi et al., Phys. Rev. C 81, 064319 (2010).

α knockout reaction from decaying nuclei

K. Yoshida and J. Tanaka, Phys. Rev. C 106, 014621 (2022)

Knockout an α before it penetrates the barrier

- Timescale: $T_{\text {decay }} \sim 0.3 \mu s\left({ }^{212} \mathrm{Po}\right), T_{\text {knockout }} \sim 10^{-22} s$.
- Free from the penetration process, direct access to α amplitude
- Clean probe for the α component in the g.s.

α knockout from ${ }^{210,212}$ Po case

α amplitude from decay study [16]

Recoil momentum of the residue

	S-factor	peak height	Cross section	$\|R F(R)\|^{2}$
${ }^{212} \mathrm{Po} /{ }^{210} \mathrm{Po}$	1.92	12.1	11.9	10.2

Difference is magnified by the peripherality of the reaction \rightarrow sensitive probe for preformed α particle on the surface

Data: A. N. Andreyev et al., Phys. Rev. Lett. 110, 242502 (2013)
Difference is magnified by the peripherality of the reaction
\rightarrow sensitive probe for preformed α particle on the surface

Beyond the α correlation: Onokoro project

ONOI

- Cluster knockout experiments to investigate
- Non-uniformity in nuclear mean-field and nuclear matter (clustering)
- $d, t,{ }^{3} \mathrm{He}$ cluster formation and (local) spin symmetry breaking
- Clustering in the sparse nuclear matter and the nuclear surface

Summary

- Knockout reaction is a powerful probe for both the nucleon single-particle state and the α cluster state of a nucleus
- Recoil momentum distribution of the knockout cross section tells us the orbital angular momentum of the knocked out particle
- α knockout reaction is sensitive to the surface α amplitude because of the strong absorption (short mean free path) of the α particle
- If the time scale of the reaction is short enough compared to the decay lifetime, the knockout reaction may be a probe for a resonant state (this is true in the case of α decay, but... ?)

[^0]: [1] B. Bayman and A. Bohr, Nuclear Physics 9, 596 (1958).

[^1]: [4] K. Ikeda et al., Prog. Theor. Phys. Supplement E68, 464 (1968).

[^2]: [5] T. A. Carey et al., Phys. Rev. C 29, 1273 (1984).

