

Spectrum of the fully-charmed tetraquark state

Guang-Juan Wang

IPNS, KEK

Together with Qi Meng (NJU), Lu Meng (RUB), Makoto Oka (JAEA), and Shi-Lin Zhu (PKU)

Based on Phys. Rev. D. 100, 096013, Phys. Rev. D 104, 036016, Phys. Rev. D 106, 096005

QM VS QCD

• Classical Quark model (QM):

convential hadron

• The quantum chromodynamics (QCD):

More complicated hadron structures.

 $D_{s0}^{*}(2317) \& X(3872) @2003, ..., P_{c} @2019, X(6900) @2020, T_{cc}^{+} @2021$

Fully-heavy tetraquark

• The fully heavy tetraquark state $T_{Q_1Q_2\bar{Q}_3\bar{Q}_4}(Q=c,b)$ is a good candidate for a **compact** tetraquark state.

- Theoretical works started in1970s. (*More details are referred to Prog.Part.Nucl.Phys. 107 (2019) 237-320.*) PRL 36 (1976) 1266, Z.Phys.C7 (1981) 317, PRD 25 (1982) 2370
- \checkmark *The tension in the existence* of the stable (bound) fully heavy tetraquark state:
- ◆ Stable QQQQQ states exist: bbbb ~ 18 20 GeV, cccc ~ 5 7 GeV (compared with theoretical di- QQ channels) arXiv:1612.00012, Eur. Phys. J. C 78, 647, EPJ Web Conf. 182, 02028, Phys. Lett. B 718, 545, Phys. Rev. D 70, 014009 ...
- + Negative: no stable $QQ\bar{Q}\bar{Q}$ states exist.

Phys. Rev. D 97, 094015, Phys. Rev. D.97.054505, Phys. Rev. D. 100, 096013, ...

 \checkmark *Existence* of the the *resonant* $T_{Q_1Q_2\bar{Q}_3\bar{Q}_4}$ and *the mass spectrum*.

Experimental search for $T_{QQ\bar{Q}\bar{Q}}$

• No significant excess observed for $T_{bb\overline{b}\overline{b}}$.

LHCb, JHEP 1810, 086 (2018).

CMS, arXiv: 2002.06393

• Observation of $T_{cc\bar{c}\bar{c}}$ structure in di- J/ψ channel:

LHCb, Science Bulletin 65 (2020) 198 3.

- *A* broad structure ranging (6.2, 6.8) GeV.
- Narrow structure *X*(6900) :

 $m = 6905 \pm 11 \text{ MeV}/c^2$, $\Gamma = 80 \pm 19 \text{ MeV}$ or $m = 6886 \pm 11 \text{ MeV}/c^2$, $\Gamma = 168 \pm 33 \text{ MeV}$.

• Hint for X(7200) but not important.

Experimental search for T_{ccccc}

• Observation of structure $T_{cc\bar{c}\bar{c}}$ in di- J/ψ channel

Theoretical interpretations

• The predicted ground S-wave $T_{cc\bar{c}\bar{c}}$: (6.3, 6.5) GeV.		J^{PC}	$M_{ m th}^1$	$M_{ m th}^2$	[43]	[44]	[47]	[34]	[33]	[41]	[49]	[37,57]
		0++	6.377 6.425	6.371 6.483	5.966	6.192 ± 0.025	6.001			6.038	6.470 6.558	6.44 ± 0.15
• X(6900): Radial & P-wave excitation?		1^{+-} 2^{++}	6.425 6.432	6.450 6.479	6.051 6.223		6.109 6.166			6.101 6.172	6.512 6.534	$\begin{array}{c} 6.37 \pm 0.18 \\ 6.37 \pm 0.19 \end{array}$
Phys. Rev. D 104, 116029 (2021).	bbb b	0++	19.215 19.247	19.243 19.305	18.754	18.826 ± 0.025	18.815	18.72 ± 0.02	18.69 ± 0.03		19.268 19.305	18.45 ± 0.15
arXiv:2207.07537 [hep-ph]. Phys Rev D 105 014006 (2022)		1^{+-} 2^{++}	19.247 19.249	19.311 19.325	18.808 18.916		18.874 18.905		···· ···	· · · · · · ·	19.285 19.295	$\begin{array}{c} 18.32 \pm 0.17 \\ 18.32 \pm 0.17 \end{array}$
Phys. Rev. D 104, 036016 (2022).	$b b \bar{c} \bar{c} (c c \bar{b} \bar{b})$	0++	12.847 12.866	12.886 12.946			12.571				12.935 13.023	••••
Phys. Rev. D 104, 014020 (2021). arXiv:2104.08814 [hep-ph].		1+- 2 ⁺⁺	12.864 12.868	12.924 12.940			12.638 12.673				12.945 12.956	

• The dynamical rescattering mechanism of double-charmonium.

```
Phys. Rev. D 103, 034024 (2021).
Phys. Rev. Lett. 126, 132001 (2021) .
arXiv:2011.11374 [hep-ph].
Phys. Rev. D 103, 071503 (2021) .
Sci. Bull. 66, 2462 (2021).
arXiv:2206.13867 [hep-ph].
```

From Zhang's talk

. . . .

. . .

• Four body system: *two color singlet states*

 $\mathbf{3}\otimes\mathbf{3}\otimes\overline{\mathbf{3}}\otimes\overline{\mathbf{3}}=2\times\mathbf{1}\oplus4\times\mathbf{8}\oplus\mathbf{10}\oplus\overline{\mathbf{10}}\oplus\mathbf{27}$

- ✓ Diquark-antidiquark: (QQ)- $(\bar{Q}\bar{Q})$:
- $\overline{3}_c \otimes 3_c = 1_c$ and $6_c \otimes \overline{6}_c = 1_c$.
- \checkmark Meson-Meson: $(Q\bar{Q})$ - $(Q\bar{Q})$

 $\begin{aligned} |\mathbf{1}\rangle &\equiv |(Q_1\bar{Q}_3)_{\mathbf{1}}(Q_2\bar{Q}_4)_{\mathbf{1}}\rangle, \\ |\mathbf{8}\rangle &\equiv |(Q_1\bar{Q}_3)_{\mathbf{8}}(Q_2\bar{Q}_4)_{\mathbf{8}}\rangle, \end{aligned} \quad \begin{aligned} |\mathbf{1}\rangle &\equiv |(Q_1\bar{Q}_3)_{\mathbf{1}}(Q_2\bar{Q}_4)_{\mathbf{1}}\rangle, \\ |\mathbf{1}'\rangle &\equiv |(Q_1\bar{Q}_4)_{\mathbf{1}}(Q_2\bar{Q}_3)_{\mathbf{1}}\rangle, \end{aligned}$

Quark-(anti)quark interaction

• Hamiltonian:

$$H = H_0 + \sum_{i} \sum_{j} \frac{\lambda_i}{2} \cdot \frac{\lambda_j}{2} \left[V_{\text{cen}}^{(0)}(r_{ij}) + V_{\text{so}}^{(1)}(r_{ij}) + V_{\text{tens}}^{(1)}(r_{ij}) \right]$$
$$H_0 = \sum_{i=1}^4 \frac{\mathbf{p}_i^2}{2m_i} + \sum_{i} m_i - T_G.$$

• $V_{cen}^{(0)}$: Color Coulomb + linear confinement + hyperfine

$$V_{\rm cen}^{(0)}(r_{ij}) = \frac{\alpha_s}{r_{ij}} - \frac{3}{4}br_{ij} - \frac{8\pi\alpha_s}{3m_im_j} \left(\frac{\sigma}{\sqrt{\pi}}\right)^3 e^{-\sigma^2 r_{ij}^2} \mathbf{s}_i \cdot \mathbf{s}_j$$

• $V_{so}^{(1)} + V_{tens}^{(1)}$: spin-orbital and tensor interactions. Phys. Rev. D 72 (2005) 054026

$$V_{\rm so}^{(1)}(r_{ij}) = V_{\rm so}^{v}(r_{ij}) + V_{\rm so}^{s}(r_{ij}).$$

$$V_{\rm so}^{v}(r_{ij}) = \frac{1}{r_{ij}} \frac{dV_{\rm Coul}}{dr_{ij}} \frac{1}{4} \left[\left(\frac{1}{m_i^2} + \frac{1}{m_j^2} + \frac{4}{m_i m_j} \right) \mathbf{L}_{ij} \cdot \mathbf{S}_{ij} + \left(\frac{1}{m_i^2} - \frac{1}{m_j^2} \right) \mathbf{L}_{ij} \cdot (\mathbf{s}_i - \mathbf{s}_j) \right]$$

$$V_{\rm so}^{s}(r_{ij}) = -\frac{1}{r_{ij}} \frac{dV_{\rm lin}}{dr_{ij}} \left(\frac{\mathbf{L}_{ij} \cdot \mathbf{s}_i}{2m_i^2} + \frac{\mathbf{L}_{ij} \cdot \mathbf{s}_j}{2m_j^2} \right)$$

$$V_{\rm tens}^{(1)}(r_{ij}) = -\left(\frac{\partial^2}{\partial r_{ij}^2} - \frac{1}{r_{ij}} \frac{\partial}{\partial r_{ij}} \right) \frac{V_{\rm Coul}}{3m_i m_j} \mathcal{S}_{ij}$$
Phys. Rev. D 32, 189

Charmonium state $\bar{c}c$

Mass spectrum (MeV)						
$^{2S+1}L_J$	Meson	EXP	THE			
$^{1}S_{0}$	η_c	2983.9	2984			
${}^{3}S_{1}$	J/ψ	3096.9	3092			
${}^{3}P_{0}$	χ_{c0}	3414.7	3426			
${}^{3}P_{1}$	χ_{c1}	3510.7	3506			
$^{1}P_{1}$	$h_c(1P)$	3525.4	3516			
${}^{3}P_{2}$	χ_{c2}	3556.2	3556			
${}^{1}S_{0}$	$\eta_c(2S)$	3637.5	3634			
${}^{3}S_{1}$	$\psi(2S)$	3686.1	3675			
${}^{3}S_{1}$	$\psi(3S)$	4039.0	4076			
3S_1	$\psi(4S)$	4421.0	4412			

PDG 2020

G.-J. Wang et al, Phys. Rev. D 100, 096013, G.-J. Wang et al, Phys. Rev. D 104, 036016,

Diquark-antidiquark configuration

• The S-wave $T_{cc\bar{c}\bar{c}}$ state: $L_{12} = L_{34} = L_r = 0$.

$$0^{++} \begin{bmatrix} [QQ]^{1}_{\bar{3}_{c}}[\bar{Q}\bar{Q}]^{1}_{\bar{3}_{c}}]^{0}_{1_{c}} & 1^{+-} & \begin{bmatrix} [QQ]^{1}_{\bar{3}_{c}}[\bar{Q}\bar{Q}]^{1}_{\bar{3}_{c}}]^{1}_{1_{c}} \\ \\ & \begin{bmatrix} [QQ]^{0}_{\bar{6}_{c}}[\bar{Q}\bar{Q}]^{0}_{\bar{6}_{c}}]^{0}_{1_{c}} & 2^{++} & \begin{bmatrix} [QQ]^{1}_{\bar{3}_{c}}[\bar{Q}\bar{Q}]^{1}_{\bar{3}_{c}}]^{2}_{1_{c}} \end{bmatrix} \end{bmatrix}$$

• P-wave state: λ -and ρ - mode excitations.

TABLE II. The color-flavor-spin configurations of the QQ $(\bar{Q}\bar{Q})$ diquark (antidiquark). The scripts "S" and "A" represent the exchange symmetry and antisymmetry for the identical particles, respectively.

Flavor	S-wave $(L = 0)$	Spin	Color		J^P
S	S	$S(S_{QQ} = 1)$	$\bar{3}_c(A)$	$[QQ]^{1}_{\bar{3}}$	1+
S	S	$\mathcal{A}(S_{QQ}=0)$	$6_c(S)$	$[QQ]^0_{6_c}$	0+
Flavor	<i>P</i> -wave $(L = 1)$	Spin	Color		
S	Α	$S(S_{QQ} = 1)$	$6_c(S)$	$[[QQ]^1_{6_c}, \rho]^0_{6_c}$	0-
				$[[QQ]_{6_c}^1, \rho]_{6_c}^1$	1-
				$[[QQ]_{6_c}^1, \rho]_{6_c}^2$	2-
S	А	$S(S_{QQ} = 0)$	$\bar{3}_c(A)$	$[[QQ]^0_{\bar{3}_c}, \rho]^1_{\bar{3}_c}$	1-

Phys. Rev. D. 100, 096013

S-wave T_{ccccc}

• The S-wave $T_{cc\bar{c}\bar{c}}$ state: $L_{12} = L_{34} = L_r = 0$.

• The coupling with non S-wave orbital excitations is neglected.

TABLE IV. The mass spectrum (MeV), the percentage of different color configurations, and the root mean square radius (fm) of the *S*-wave tetraquark states.

0++	Mass	$\bar{3}_c \otimes 3_c$	$6_c \otimes \overline{6}_c$	$1_c \otimes 1_c$	$8_c \otimes 8_c$	r_{12}/r_{34}	r	r_{13}/r_{24}	r'
1 S	6405	31.9%	68.1%	96.9%	3.13%	0.52	0.31	0.48	0.37
	6498	67.7%	32.3%	5.7%	94.3%	0.51	0.36	0.51	0.36
2S	6867	10.6%	89.4%	80.6%	19.4%	0.65	0.35	0.58	0.46
	7007	89.7%	10.3%	26.0%	74.0%	0.49	0.47	0.59	0.35
1+-	Mass	$\bar{3}_c \otimes 3_c$	$6_c \otimes \overline{6}_c$	$1_c \otimes 1_c$	$8_c \otimes 8_c$	r_{12}/r_{34}	r	r_{13}/r_{24}	r'
1 S	6481	100%	0%	33.3%	66.7%	0.48	0.37	0.51	0.34
2S	6954	100%	0%	33.3%	66.7%	0.61	0.44	0.61	0.43
3S	7024	100%	0%	33.3%	66.7%	0.66	0.42	0.62	0.46
2++	Mass	$\bar{3}_c \otimes 3_c$	$6_c \otimes \overline{6}_c$	$1_c \otimes 1_c$	$8_c \otimes 8_c$	r_{12}/r_{34}	r	r_{13}/r_{24}	r'
1S	6502	100%	0%	33.3%	66.7%	0.49	0.39	0.53	0.35
2S	6917	100%	0%	33.3%	66.7%	0.55	0.60	0.72	0.39
3S	7030	100%	0%	33.3%	66.7%	0.64	0.46	0.64	0.45

0⁺⁺ state: an admixture of 3_c - 3_c and 6_c - 6_c configurations.
0⁺⁺ ground state: 6_c - 6_c component is lighter and dominates.

- No bound states exist.
- Wide S-wave $T_{cc\bar{c}\bar{c}}$: $di J/\psi$, $di \eta_c$, $\eta_c J/\psi$.
- X(6900): wide S-wave states $J^{PC} = 0^{++}$ or 2^{++} .

Phys. Rev. D. 100, 096013

 0^{++}

 1^{+-}

 2^{++}

P-wave $T_{cc\bar{c}\bar{c}}$

J^{PC}	Decay modes
0^{-+}	$J/\psi J/\psi$ (P-wave), $\eta_c \chi_{c0}, J/\psi h_c, J/\psi \psi(2S)$ (P-wave)
1^{-+}	$J/\psi J/\psi$ (P-wave) $J/\psi h_c, J/\psi \psi (2S)$ (P-wave)
2^{-+}	$m{J}/\psim{J}/\psi(ext{P-wave}),\eta_c\chi_{c2},J/\psi h_c,J/\psi\psi(2S)(ext{P-wave})$
0	$\eta_c J/\psi(ext{P-wave}), J/\psi\chi_{c1}, \eta_c\psi(2S)(ext{P-wave})$
1	$\eta_c J/\psi(ext{P-wave}), \eta_c h_c, J/\psi\chi_{c0}, J/\psi\chi_{c1}, J/\psi\chi_{c2}, \eta_c\psi'(ext{P-wave})$
$2^{}$	$\eta_c J/\psi(ext{P-wave}), J/\psi\chi_{c1}, J/\psi\chi_{c2}, \eta_c\psi'(ext{P-wave}), h_c\chi_{c0}(ext{P-wave})$
$3^{}$	$J/\psi\chi_{c2}$

- New narrow $T_{cc\bar{c}\bar{c}}$ tetraquark: especially $J^{PC} = 0^{--}$ or 1^{-+} .
- P-wave decay channels dominated: small decay widths.
- X(6900): Narrow P-wave state with $J^{PC} = 1^{-+}$ or 2^{-+} .

Questions

• No stable bound states exist in the quark models.

- The lowest fully charmed tetraquark state : in mass region (6.5, 6.7, 6.9) GeV
- X(6900): wide S-wave states $J^{PC} = 0^{++}$ or 2^{++} or narrow P-wave states with $J^{PC} = 1^{-+}$ or 2^{-+} .
- Redundancy states :

✓ The finite number of the bases → discrete eigenvalues of the scattering states
 ✓ Multiquark states with large decay widths → hard to observe

Phys. Rev. D. 100, 096013 Phys. Rev. D. 104, 036016

Complex scaling method (CSM): T_{ccccc}

• Complex scaling method: identifying resonances

 $\mathbf{r} \rightarrow \mathbf{r} e^{i\theta}, \quad \mathbf{k} \rightarrow \mathbf{k} e^{-i\theta}$

With the increasing θ , bound and resonant states will stay stable while scattering states (continuum states) will rotate with 2θ .

• Complex scaling method for tetraquark state:

 $T_{cc\bar{c}\bar{c}}$

• 1st pole: good convergency

- 2nd pole: quite close to the threshold lines with a scaling angle in the (8, 10) degree
- \checkmark Higher states are more difficult to describe.

$T_{cc\bar{c}\bar{c}}$

J^{PC}	$1 { m st}$	2nd
0^{++}	$7035.1 - i \ 38.9$	$7202.2 - i \ 30.3$
1^{+-}	7049.6 - i 34.7	$7273.5 - i \ 24.9$
2^{++}	$7068.5 - i \ 41.8$	7281.3 - i 45.6

• 1st pole VS X(6900):

 \checkmark 100 MeV higher mass & consistent decay width

• 2nd pole: a candidate for X(7200).

• Absence of the lower X(6600) state.

 \checkmark a wide resonance asymptote will oscillate very strongly in the complex plane.

• The confinement mechanism~ br.

→ Oka san's talk

Thank you for your attention!