Recent results and future plan of LEPS2/BGOegg experiment

HASHIMOTO, Toshikazu Research Center for Nuclear Physics (RCNP), Osaka University

- Physics motivation
- Recent results
- Upgrade plan (Phase-II)

Physics motivation

- The studies of excited baryon resonances are essential for understanding the hadron structure since the non-perturbative properties of QCD make analytical calculations impossible in the low energy regions.
- Meson photoproduction from the nucleon is a powerful tool for clarifying the nucleon excitation spectra.
- The N*s & Δ*s have broad widths overlapping with each other. The measurement of the photon beam asymmetry (Σ) in addition to the dσ/dΩ helps to decompose the resonances with the interferences of spin dependent amplitudes.
- Baryon resonance studies via meson photoproduction
- Single meson $(\pi^0/\eta/\omega)$ photoproduction N. Muramatsu *et al.* Phys. Rev. C **100**, 055202 (2019) N. Muramatsu *et al.* Phys. Rev. C **102**, 025201 (2020) T. Hashimoto *et al.* Phys. Rev. C **106**, 035201 (2022)

 π^0 : Isospin I is 1. \Rightarrow Both N^* and Δ^* contribute at s-channel.

 η / ω : Isospin I is 0. \Rightarrow Only N^* contributes at s-channel.

η meson couple to N^* with $s\bar{s}$ component.

 ω meson couple to N^* with the different spin state

Physics motivation

- We want to get evidence for partial restoration of spontaneous breaking of chiral symmetry.
- An $\eta'(958)$ meson is expected to have large mass reduction in nuclei.
- The η' meson provides an attractive way to explore the relation between chiral symmetry and UA(1) anomaly.
- Studies of η' mass in nuclei
- \succ η' nucleus bound search
- > Direct measurement of η' mass in nuclei

```
\frac{\text{Indirect measurement}}{\text{Need to know bound levels.}} (m_{\eta'} + M_A)
```

N. Tomida *et al.* Phys. Rev. Lett. **124**, 202501 (2020) Y. Matsumura, Doctoral Thesis.

Direct measurement by $M(\gamma\gamma)$ Need high-resolution calorimeter.

LEPS2/BGOegg experiment

Single meson photoproduction

We measure all particles in final state and use a kinematic fit. $\gamma p \rightarrow \pi^0 p \rightarrow \gamma \gamma p(Br: 98.8 \%)$ $\rightarrow \eta p \rightarrow \gamma \gamma p(Br: 39.4 \%)$ $\rightarrow \omega p \rightarrow \pi^0 \gamma p \rightarrow \gamma \gamma \gamma p(Br: 8.40 \%)$

- γ detection at BGOegg
- Proton detection at BGOegg or DC(and RPC)
- Beam energy measurement at the photon tagging counter.
- require 4-momentum conservation and meson mass(π^0/η mass)
- magnitude of proton momentum is treated as an unmeasured variable.

Differential cross section

Our data are consistent with other experimental results and PWA model calculations.

Polar angle dependence of $d\sigma/d\Omega\left(\eta ight)$

C.M. energy dependence of $d\sigma/d\Omega\left(\eta ight)$

- The peaking behavior at backward angles and high energies can be seen.
 ⇒ Naively thinking, u-channel contribution.
 ⇒ If so, smooth energy dependence should be seen, but ...
- A clear bump structure was seen at the backward angles.
 ⇒ The above behavior can not be explained with only u-channel contribution.
- This structure was not seen at other angles.
 ⇒ high-spin resonances which strongly decay to forward/backward angles.
- The position of this structure shifts over $\cos \theta_{c.m.}^{\eta}$. \Rightarrow Multi-resonance contributions? _{ELPH workshop} C033, HASHIMOTO-Toshikazu 2022/12/6

Comparison with η , π^0 , and ω differential cross sections

Phys. Rev. C 106, 035201 (2022)

- A bump-like enhancement of differential cross sections can only be seen at backward angles in the η photoproduction reaction.
- This bump structure is likely to be associated with the nucleon resonances that have a large $s\bar{s}$ component and strongly couple to the ηN channel.
- Candidates such as $N(2120)\frac{3}{2}$, $N(2190)\frac{7}{2}$, $N(2220)\frac{9}{2}$, $N(2250)\frac{9}{2}$.

V) ELPH workshop C033, HASHIMOTO-Toshikazu

Photon beam asymmetry

Photon beam asymmetry $\Sigma(\pi^0)$

Photon beam asymmetry $\Sigma(\omega)$

Photon beam asymmetry $\Sigma(\eta)$

- We measured photon beam asymmetries of each meson 1.8 < W < 2.3 GeV.
- Our data are similar to other experimental results at lower energies.
- A wide angle measurement at $E_{\gamma} > 2$ GeV is new. (π^0)

Precise values in a wide angular range were obtained for the first time above c.m. energies around 2.1 GeV. (ω)

- Our data above 2.1 GeV is new. (η)
- The discrepancy between PWA model calculations exists.
- A re-fit to the new data can improve the current understanding of resonance and Born-term contributions.

 η' nucleus bound search $\gamma + {}^{12}C \rightarrow p_f + \eta' \otimes {}^{11}B$

High momentum proton detection at extremely forward angles. ⇒ TOF measurement at RPC

- No $(\eta + p_s)$ signals from η' bound state in $-50 < E_{ex} - E_0 < 50$ MeV Upper limit : **2.2 nb/sr** @ $\cos(\eta p_s) < -0.9$ $(E_{\gamma} = 1.3 - 2.4$ GeV average) \Rightarrow Compare with the DWIA calculation to discuss η' -nucleus potential.
- Indicate small potential V₀ or small η'N->ηN branch

Search for the bound state in the missing mass spectrum. & Nuclear absorption signal for a better S/N ratio. $\Rightarrow \eta' p \rightarrow \eta p$ (back-to-back) at BGOegg

$$\begin{split} \gamma + {}^{12}\mathrm{C} &\to p_f + \eta' \otimes {}^{11}\mathrm{B} \\ & \downarrow \eta' + p \to \eta + p_s \end{split}$$

Absorption of η' at rest \Rightarrow **Isotropic & back-to-back** angular distribution. The kinetic energy of $\eta \& p$ is **monochromatic**.

ELPH workshop C033, HASHIMOTO-Toshikazu

Direct measurement of η' mass in nuclei

$$\gamma + {}^{12}C \rightarrow \eta' + X, \eta' \rightarrow \gamma\gamma (2.2 \%)$$

- Measurement of **spectral function** (line-shape) of η' meson.
- No experimental data for η' .

• Structure of background

- tail from $\omega \to \pi^0 \gamma$ with $\gamma \gamma$ detection
- smooth BG around η' mass

•Following function is fitted to the $\gamma\gamma$ spectrum: <u> ω -shape</u> + <u>smooth BG</u> (I)(MC) (2)exp($p_0 + p_1x + p_2x^2 + p_3x^3$) + <u> η' (quasi-free</u>) + <u> η' (in-medium</u>) (3)(gaussian) (4)(MC)

The difference of the fitness(χ²) between with and without in-medium signal ④ is used to discuss in-medium effect on the spectrum.

10

Result of the direct measurement

- Introduced the phenomenological parameters for mass and width of η' inside the nucleus.
- The maximum significance of 3.7 σ was obtained for the parameter corresponding to the mass reduction.

$$\succ$$
 Δm_{η'} = 40 − 70 MeV/ c²

$$\blacktriangleright \Delta \Gamma_{\rm tot} < 60 \, {\rm MeV}$$

- This result is obtained from 2015A Carbon data.
- More carbon data exists (2016A). -> Increase statistics x2.
- We will publish the merged 2015A and 2016A results.

Upgrade plan for BGOegg experiment

Forward DC & RPC were removed for the LEPS2Solenoid experiment.

Instead, Forward Gamma detector & Forward Plastic Scintillators have been installed.

 \Rightarrow A new experiment to search for the η' mass medium modification with a Cu target.

(1) **Upgrade the detector setup.**

⇒ Multi-meson BG ($\gamma p \rightarrow \pi^0 \pi^0 p$) ×1/40 (2) Change a target from C [20 mm] to Cu [7 mm]. ⇒ R_{nucleus} ×1.8, # of nucleons ×1.8, $\sigma(M_{\gamma\gamma})$ ×0.6 (3) Increase a photon beam intensity. 24W pulse laser + existing 3 lasers ⇒ ~5M cps

\Rightarrow 28 σ in a few months

if the Phase-I result is assumed.

BGOegg calorimeter

Μ(γγ) ΜeV

Preparation & test data-taking in FY2022. **Physics runs with a Cu target in FY2023.** Reference data with LH_2 target in FY2024.

ELPH workshop C033, HASHIMOTO-Toshikazu

calorimeter

Other studies at BGOegg experiment

Phase-II

- > Measurement of the mass shift and width broadening of the $f_1(1285)$ meson
- A QCD sum rule analysis for the *f*1(1285) meson mass predicts about 100 MeV attraction at the normal nuclear density
- Spectral analysis of $f_1(1285)$ $\eta'/f_1 \rightarrow \pi^0 \pi^0 \eta \rightarrow 6\gamma$
- The BGOegg calorimeter has already achieved a good mass resolution.

Phase-I

- > Single η' photoproduction
- > Double meson photoproduction $(\pi^0\pi^0/\pi^0\eta/\pi^0\omega)$
- > Search for η' bound nuclei with 2-nucleon absorption tag($\eta' NN \rightarrow NN$)

Summary

We summarized the recent results in LEPS2/BGOegg experiment.

- > Baryon resonance studies via single meson photoproduction
- The bump structure in η backward angle region above 2 GeV can be seen.
- \Rightarrow Indicate resonances with high-spin and large $s\overline{s}$ component.
- New photon beam asymmetries at higher energies are measured.
- $\succ \eta'$ mass reduction in nuclei with carbon target
- No signal event from η' nucleus bound state
- ⇒ Indicate small V_0 or $\eta'N$ -> ηN branch
- An enhancement in the low-mass region of the η' mass is obtained.
- This significance is 3.7 σ .
- \Rightarrow Not enough to exclude statistical fluctuations.
- BGOegg Phase-II experiment
- Additional acceptance for forwarding γ
- Heavier nuclear target (Cu)
- Physics run will start in the next fiscal year.