# Recent results and future plan of LEPS2/BGOegg experiment 

HASHIMOTO, Toshikazu
Research Center for Nuclear Physics (RCNP),
Osaka University

- Physics motivation
- Recent results
- Upgrade plan (Phase-II)


## Physics motivation

- The studies of excited baryon resonances are essential for understanding the hadron structure since the non-perturbative properties of QCD make analytical calculations impossible in the low energy regions.
- Meson photoproduction from the nucleon is a powerful tool for clarifying the nucleon excitation spectra.
- The $N^{*} s \& \Delta^{*}$ s have broad widths overlapping with each other.

The measurement of the photon beam asymmetry ( $\Sigma$ ) in addition to the $\mathrm{d} \sigma / \mathrm{d} \Omega$ helps to decompose the resonances with the interferences of spin dependent amplitudes.

- Baryon resonance studies via meson photoproduction
> Single meson $\left(\pi^{0} / \eta / \omega\right)$ photoproduction N. Muramatsu et al. Phys. Rev. C 100, 055202 (2019)
N. Muramatsu et al. Phys. Rev. C 102, 025201 (2020)
T. Hashimoto et al. Phys. Rev. C 106, 035201 (2022)
$\pi^{0}$ : Isospin I is $1 . \Rightarrow$ Both $N^{*}$ and $\Delta^{*}$ contribute at s-channel.
$\eta / \omega$ : Isospin I is $0 . \Rightarrow$ Only $N^{*}$ contributes at s-channel.
$\eta$ meson couple to $N^{*}$ with $s \bar{s}$ component.
$\omega$ meson couple to $N^{*}$ with the different spin state


## Physics motivation

- We want to get evidence for partial restoration of spontaneous breaking of chiral symmetry.
- An $\eta^{\prime}(958)$ meson is expected to have large mass reduction in nuclei.
- The $\eta^{\prime}$ meson provides an attractive way to explore the relation between chiral symmetry and UA(1) anomaly.
- Studies of $\eta^{\prime}$ mass in nuclei
> $\eta^{\prime}$ - nucleus bound search
N. Tomida et al. Phys. Rev. Lett. 124, 202501 (2020)
Y. Matsumura, Doctoral Thesis.
> Direct measurement of $\eta^{\prime}$ mass in nuclei

Indirect measurement $\left(m_{\eta^{\prime}}+M_{A}\right)$
Need to know bound levels.

Direct measurement by $\mathrm{M}(\gamma \gamma)$
Need high-resolution calorimeter.

$\eta$-PRiME/Super-FRS (GSI)
BGOegg phase-1 (SPring-8)


## LEPS2/BGOegg experiment



Backward Compton scattering with 355 nm UV laser and 8 GeV electron
Beam tagging is performed by detecting recoil electrons.
$E_{\gamma} 1.3 \sim 2.4 \mathrm{GeV}$
beam intensity $\sim 2$ Mcps


BGOegg: EM calorimeter consisting of BGO crystals
$\sigma_{\mathrm{E}}=1.3 \%$ @ 1 GeV , covering $\theta=24^{\circ}-144^{\circ}$
IPS: Plastic scintillator bars for charge identification
DC: Charged particle tracker $\sigma_{\text {position }}=300 \mu \mathrm{~m}$, covering $\theta<21^{\circ}$
RPC: Gas chamber for TOF measurement $\sigma_{\text {TOF }}=80 \mathrm{ps} \Rightarrow \sigma_{p}=1 \%$ @ $\mathbf{~ G e V}$ proton, covering $\theta<6.8^{\circ}$

## Single meson photoproduction

We measure all particles in final state and use a kinematic fit.

$$
\begin{aligned}
\gamma \mathrm{p} & \rightarrow \pi^{0} \mathrm{p} \rightarrow \gamma \gamma \mathrm{p}(\mathrm{Br}: 98.8 \%) \\
& \rightarrow \eta \mathrm{p} \rightarrow \gamma \gamma \mathrm{p}(\mathrm{Br}: 39.4 \%) \\
& \rightarrow \omega \mathrm{p} \rightarrow \pi^{0} \gamma \mathrm{p} \rightarrow \gamma \gamma \gamma \mathrm{p}(\mathrm{Br}: 8.40 \%)
\end{aligned}
$$

- $\gamma$ detection at BGOegg
- Proton detection at BGOegg or DC(and RPC)
- Beam energy measurement at the photon tagging counter.
- require 4-momentum conservation and meson mass $\left(\pi^{0} / \eta\right.$ mass)
- magnitude of proton momentum is treated as an unmeasured variable.



## Differential cross section




Our data are consistent with other experimental results and PWA model calculations.

## Polar angle dependence of $\boldsymbol{d} \boldsymbol{\sigma} / \boldsymbol{d} \Omega(\boldsymbol{\eta})$


C.M. energy dependence of $d \sigma / d \Omega(\boldsymbol{\eta})$

The peaking behavior at backward angles and high energies can be seen.
$\Rightarrow$ Naively thinking, u-channel contribution.
$\Rightarrow$ If so, smooth energy dependence should be seen, but ...
A clear bump structure was seen at the backward angles.
$\Rightarrow$ The above behavior can not be explained with only u-channel contribution.
This structure was not seen at other angles.
$\Rightarrow$ high-spin resonances which strongly decay to forward/backward angles.
The position of this structure shifts over $\cos \theta_{\text {c.m. }}^{\eta}$.
$\Rightarrow$ Multi-resonance contributions? ELPH workshop C033, HASHIMOTO-Toshikazu

## Comparison with $\eta, \pi^{0}$, and $\omega$ differential cross sections

- A bump-like enhancement of differential cross sections can only be seen at backward angles in the $\eta$ photoproduction reaction.
- This bump structure is likely to be associated with the nucleon resonances that have a large $s \bar{s}$ component and strongly couple to the $\eta \mathrm{N}$ channel.
- Candidates such as $N(2120)^{\frac{3^{-}}{2}}, N(2190) \frac{7^{-}}{2}$, $N(2220) \frac{9^{+}}{}{ }^{+}, N(2250) \frac{9^{-}}{2}$.


## Photon beam asymmetry

Photon beam asymmetry $\boldsymbol{\Sigma}\left(\boldsymbol{\pi}^{\mathbf{0}}\right)$


Photon beam asymmetry $\boldsymbol{\Sigma}(\boldsymbol{\omega})$


Photon beam asymmetry $\boldsymbol{\Sigma}(\boldsymbol{\eta})$


- We measured photon beam asymmetries of each meson $1.8<W<2.3 \mathrm{GeV}$.
- Our data are similar to other experimental results at lower energies.
- A wide angle measurement at $E_{\gamma}>2 \mathrm{GeV}$ is new. $\left(\boldsymbol{\pi}^{\mathbf{0}}\right)$
- Precise values in a wide angular range were obtained for the first time above c.m. energies around 2.1 GeV. ( $\boldsymbol{\omega}$ )
- Our data above 2.1 GeV is new. $(\boldsymbol{\eta})$
- The discrepancy between PWA model calculations exists.
- A re-fit to the new data can improve the current understanding of resonance and Born-term contributions.


## $\eta^{\prime}$ nucleus bound search

$$
\gamma+{ }^{12} \mathrm{C} \rightarrow p_{f}+\eta^{\prime} \otimes{ }^{11} \mathrm{~B}
$$

High momentum proton detection at extremely forward angles.
$\Rightarrow$ TOF measurement at RPC

- No $\left(\eta+p_{s}\right)$ signals from $\eta^{\prime}$ bound state in $-50<\mathrm{E}_{\mathrm{ex}}-\mathrm{E}_{0}<50 \mathrm{MeV}$
Upper limit : 2.2 nb/sr @ cos $\left(n p_{\mathrm{s}}\right)<-0.9$

$$
\left(\mathrm{E}_{\gamma}=1.3-2.4 \mathrm{GeV} \text { average }\right)
$$

$\Rightarrow$ Compare with the DWIA calculation to discuss $\eta^{\prime}$-nucleus potential.

- Indicate small potential $V_{0}$ or small $\eta^{\prime} N$-> $\eta N$ branch

Search for the bound state in the missing mass spectrum.
\&

> Nuclear absorption signal for a better S/N ratio.
> $\Rightarrow \eta^{\prime} \mathbf{p} \rightarrow \eta \mathbf{\eta p}$ (back-to-back) at BGOegg

\[

\]

Absorption of $\eta^{\prime}$ at rest
$\Rightarrow$ Isotropic \& back-to-back angular distribution. The kinetic energy of $\eta$ \& $p$ is monochromatic.


## Direct measurement of $\eta^{\prime}$ mass in nuclei

$$
\gamma+{ }^{12} \mathrm{C} \rightarrow \eta^{\prime}+\mathrm{X}, \eta^{\prime} \rightarrow \gamma \gamma(2.2 \%)
$$

- Measurement of spectral function (line-shape) of $\eta^{\prime}$ meson.
- No experimental data for $\eta^{\prime}$.


## Line shape analysis



- Structure of background
- tail from $\omega \rightarrow \pi^{0} \gamma$ with $\gamma \gamma$ detection
- smooth BG around $\eta^{\prime}$ mass
- Following function is fitted to the $\gamma \gamma$ spectrum:
$\omega$-shape + smooth BG

$$
\begin{aligned}
(1)(\mathrm{MC}) & (2) \exp \left(p_{0}+p_{1} x+p_{2} x^{2}+p_{3} x^{3}\right) \\
+ & \frac{\eta^{\prime}(\text { quasi-free })}{(3)(\text { gaussian })}+\frac{\eta^{\prime}(\text { in-medium })}{(4)(\mathrm{MC})}
\end{aligned}
$$

-The difference of the fitness $\left(\chi^{2}\right)$ between with and without in-medium signal (4) is used to discuss in-medium effect on the spectrum.

## Result of the direct measurement



- Introduced the phenomenological parameters for mass and width of $\eta^{\prime}$ inside the nucleus.
- The maximum significance of $3.7 \sigma$ was obtained for the parameter corresponding to the mass reduction.
$\Rightarrow \Delta m_{\eta^{\prime}}=40-70 \mathrm{MeV} / c^{2}$
$>\Delta \Gamma_{\text {tot }}<60 \mathrm{MeV}$
- This result is obtained from 2015A Carbon data.
- More carbon data exists (2016A). -> Increase statistics x2.
- We will publish the merged 2015A and 2016A results.


## Upgrade plan for BGOegg experiment

Forward DC \& RPC were removed for the LEPS2Solenoid experiment.
Instead,Forward Gamma detector \& Forward Plastic Scintillators have been installed.
$\Rightarrow$ A new experiment to search for the $\eta^{\prime}$ mass medium modification with a Cu target.
(1) Upgrade the detector setup.
$\Rightarrow$ Multi-meson BG $\left(\gamma p \rightarrow \pi^{0} \pi^{0} p\right) \times 1 / 40$
(2) Change a target from C [20 mm] to Cu [7 mm]. $\Rightarrow R_{\text {nucleus }} \times 1.8$, \# of nucleons $\times 1.8, \sigma\left(M_{\gamma \gamma}\right) \times 0.6$
(3) Increase a photon beam intensity.

24 W pulse laser + existing 3 lasers $\Rightarrow \sim 5 \mathrm{M}$ cps $\Rightarrow 28 \sigma$ in a few months
BGOegg if the Phase-I result is assumed.


Forward Plastic Scintillators

MC simulation for $\gamma p \rightarrow \pi^{0} \pi^{0} p$. BG can be reduced to $1 / 10$ or less.


Preparation \& test data-taking in FY2022. Physics runs with a Cu target in FY2023. Reference data with $\mathrm{LH}_{2}$ target in FY2024.

## Other studies at BGOegg experiment

## Phase-II

> Measurement of the mass shift and width broadening of the $\mathrm{f}_{1}(1285)$ meson

- A QCD sum rule analysis for the f1(1285) meson mass predicts about 100 MeV attraction at the normal nuclear density
- Spectral analysis of $f_{1}(1285)$

$$
\eta^{\prime} / f_{1} \rightarrow \pi^{0} \pi^{0} \eta \rightarrow 6 \gamma
$$

- The BGOegg calorimeter has already achieved a good mass resolution.


## Phase-I


> Single $\eta^{\prime}$ photoproduction
$>$ Double meson photoproduction $\left(\pi^{0} \pi^{0} / \pi^{0} \eta / \pi^{0} \omega\right)$
$>$ Search for $\eta^{\prime}$ bound nuclei with 2-nucleon absorption $\operatorname{tag}\left(\eta^{\prime} N N \rightarrow N N\right)$

## Summary

We summarized the recent results in LEPS2/BGOegg experiment.
$>$ Baryon resonance studies via single meson photoproduction

- The bump structure in $\eta$ backward angle region above 2 GeV can be seen.
$\Rightarrow$ Indicate resonances with high-spin and large $s \bar{s}$ component.
- New photon beam asymmetries at higher energies are measured.
$>\eta^{\prime}$ mass reduction in nuclei with carbon target
- No signal event from $\eta^{\prime}$ nucleus bound state
$\Rightarrow$ Indicate small $\mathrm{V}_{0}$ or $\eta^{\prime} \mathrm{N}->\eta \mathrm{N}$ branch
- An enhancement in the low-mass region of the $\eta^{\prime}$ mass is obtained.
- This significance is $3.7 \mathrm{\sigma}$.
$\Rightarrow$ Not enough to exclude statistical fluctuations.
> BGOegg Phase-II experiment
- Additional acceptance for forwarding $\gamma$
- Heavier nuclear target (Cu)
- Physics run will start in the next fiscal year.

