

Yuki Kamiya HISKP, Bonn Univ.

ハドロン運動量相関を用いたチャームハドロン 相互作用の研究

ハドロン分光に迫る反応と構造の物理@ online 2022/12/6

High energy nuclear collision and FSI

Hadron-hadron correlation

$$C_{12}(k_1, k_2) = \frac{N_{12}(k_1, k_2)}{N_1(k_1)N_2(k_2)}$$

=
$$\begin{cases} 1 & (\text{w/o correlation}) \\ \text{Others (w/ correlation)} \end{cases}$$

High energy nuclear collision and FSI

Hadron-hadron correlation

• Koonin-Pratt formula : S.E. Koonin, PLB 70 (1977) S. Pratt et. al. PRC 42 (1990) $C(\mathbf{q}) \simeq \int d^3 \mathbf{r} \ S(\mathbf{r}) | \varphi^{(-)}(\mathbf{q}, \mathbf{r}) |^2_{\mathbf{q} = (m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2)/(m_1 + m_2)}$ $S(\mathbf{r}) \quad : \text{Source function}$

 $\varphi^{(-)}(\mathbf{q},\mathbf{r})$: Relative wave function

High energy nuclear collision and FSI

• High energy nuclear collision and FSI A_2 Final State Interaction (FSI)

Hadronization

Hadron-hadron correlation

A

- Koonin-Pratt formula : $\underset{S.E. \text{ Koonin, PLB 70 (1977)}}{\text{S. Pratt et. al. PRC 42 (1990)}}$ $C(\mathbf{q}) \simeq \int d^3 \mathbf{r} S(\mathbf{r}) | \varphi^{(-)}(\mathbf{q}, \mathbf{r}) |^2_{\mathbf{q} = (m_2 \mathbf{k}_1 - m_1 \mathbf{k}_2)/(m_1 + m_2)}$ $S(\mathbf{r})$: Source function $\varphi^{(-)}(\mathbf{q}, \mathbf{r})$: Relative wave function
- Depends on ...

Interaction (strong and Coulomb)

mmm

quantum statistics (Fermion, boson)

• Un-bound Unitary Bound • Un-bound Unitary Bound $C(\mathbf{q}) \simeq \int d^3\mathbf{r} S(\mathbf{r})/[2]{\varphi}^{(-)}(\mathbf{q},\mathbf{r})|^2$

- Scattering length a_0 and source size Rdetermines the suppression/enhancement of line shape $* a_0 = \mathcal{F}(q = 0)$
- Repulsive int. $(a_0 < 0, \text{ small } | a_0 |)$ Suppressed C(q)
- Attractive int. w/ bound state $(a_0 < 0, |arge|a_0|)$
 - Suppressed C(q) for Large REnhanced C(q) for small R
- Attractive int. w/o bound state ($a_0 > 0$)

Enhanced C(q)

(

F

Hadron correlation in high energy nuclear collision

• How to construct correlation model from theory; $\mathcal{F}(q) \to C(q)$

- Using effective potential
 - Construct the eff. potential by reproducing the amplitude \mathcal{F} (or threshold parameters (a_0, r_e))
 - Solving the Schrödinger eq. $\longrightarrow \phi$
- Using half offshell *T*-matrix $T_l(q, k; E)$ Haidenbauer, Nuclear Physics A 981 (2019) 1–16
 - $T_l(q,k;E) \longrightarrow \varphi$

$$\tilde{\psi}(k,r) = j_l(kr) + \frac{1}{\pi} \int j_l(qr) \, dq \, q^2 \frac{1}{E - E_1(q) - E_2(q) + i\epsilon} T_l(q,k;E)$$

- Using Lednicky-Lyuboshitz formula
 - Direct relation between C(q) and $\mathcal{F}(q)$
 - Detaill —> Next slide

Comparison of model predictions and correlation data

• How to extract interaction from Correlation data; $C(q) \rightarrow \mathcal{F}(q)$

- Lednicky-Lyuboshitz (LL) formula R. Lednicky, et al. Sov. J. Nucl. Phys. 35(1982).
 - Approximate φ by asymptotic wave func.(s-wave only)

$$C(\mathbf{q}) \simeq \int d^3 \mathbf{r} \ S(\mathbf{r}) |\varphi^{(-)}(\mathbf{q}, \mathbf{r})|^2$$
$$\varphi^{(-)}(\mathbf{q}, \mathbf{r}) \xrightarrow{r \to \infty} \exp(-i\mathbf{q} \cdot \mathbf{r}) + \frac{\mathscr{F}(-q)}{r} \exp(-iqr)$$

 \bullet Use effective range expansion for amplitude ${\mathcal F}$

$$\mathcal{F}(q) = \left[\frac{1}{a_0} + \frac{r_e}{2}q^2 - iq\right]^{-1}$$

$$C(q) = 1 + \left[\frac{|\mathcal{F}(q)|^2}{2R^2}F_3\left(\frac{r_{\text{eff}}}{R}\right) + \frac{2\text{Re}\ \mathcal{F}(q)}{\sqrt{\pi}R}F_1(2qR) - \frac{\text{Im}\ \mathcal{F}(q)}{R}F_2(2qR)\right]$$

• Fit the data with formula

- Direct relation between C(q) and $\mathcal{F}(q)$
- Difficult to introduce the detailed interaction e.g. coupled-channel
- Coulomb int. can be only introduced with Gamow factor (too crude for C(q))

• How to extract interaction from Correlation data; $C(q) \rightarrow \mathcal{F}(q)$

• Potential method

$$C(q) \to V(r) \to \mathcal{F}(q)$$

• Parametrize the potential

e.g.
$$V(r) = V_0 \exp(-(mr)^2)$$
 $\xrightarrow{H\varphi = E\varphi} \varphi \xrightarrow{C(\mathbf{q}) = \int d^3\mathbf{r} S(\mathbf{r}) |\varphi^{(-)}(\mathbf{q}, \mathbf{r})|^2} C(q)$

• Determine the parameters by fitting the data

- Calculate the amplitude or threshold parameters (a_0, r_e) from V(r)
 - More fitting costs (needs to solve Schrödinger eq. for every change of parameters.)
 - Easy to introduce coupled-channel effect
 - Coulomb effect can be precisely calculated by adding Coulomb pot. in *H*.

$\overline{D}N$ interaction and D^-p correlation function

- • $\overline{D}(\overline{c}l)N$ interaction (C = -1)
- D^-p correlation function ALICE PRD 106 (2022) 5, 052010

* Background including miss PID is subtracted

- $f_0 \equiv \mathscr{F}(E = E_{\rm th})$
- + : attractive w/o bound
- : repulsive

or attractive w/ bound

• Model scattering lengths f_0

Model	$f_0 (I = 0)$	$f_0 (I = 1)$	n_{σ}
Coulomb			(1.1-1.5)
Haidenbauer et al. [21]			
$-g_{\sigma}^{2}/4\pi = 1$	0.14	-0.28	(1.2-1.5)
$-g_{\sigma}^{2}/4\pi = 2.25$	0.67	0.04	(0.8-1.3)
Hofmann and Lutz [22]	-0.16	-0.26	(1.3 - 1.6)
Yamaguchi et al. [24]	-4.38	-0.07	(0.6-1.1)
Fontoura et al. [23]	0.16	-0.25	(1.1 - 1.5)

- pure Coulomb case is compatible with data
- Better agreement with strongly attractive interaction models for I = 0.
- pion exchange model of Yamaguchi et al. predicting 2 MeV bound state gives the lowest n_{σ}

$\overline{D}N$ interaction and D^-p correlation function

ALICE PRD 106 (2022) 5, 052010

• Constraint on I = 0 scattering length f_0

• Analysis with one range Gaussian potential

 $V(r) = V_0 \exp(-m^2 r^2)$

- $m < -\rho$ exchange ($m = m_{\rho}$)
- Assume negligible I = 1 int.

- $f_0 \equiv \mathscr{F}(E = E_{\rm th})$
- + : attractive w/o bound
- : repulsive

or attractive w/ bound

• Constraint on $f_{0, I=0}$

- 1σ constraint $-> f_{0, I=0}^{-1} \in [-0.4, 0.9]$ fm⁻¹:
- strongly attractive with or without bound state
- * Most models predicts repulsive int. for I = 1-> I = 0 may have more attraction in reality.

Quark Matter 2022

$D\pi$ interaction

enuine CF oulomb only

teraction models I=1 .Y.Guo + Coulomb

- T_{cc}
- Observed in $D^0 D^0 \pi$ spectrum

LHCb, Nature Com. 13 (2022) 1

- X(3872) or χ_{c1} Firstly observed in $\pi\pi J/\Psi$ spectrum
 - Firstly observed in $\pi \pi J/\Psi$ spectrum Belle, PRL 91, 262001 (2003)
 - Confirmed by Babar: PRD71, 071003 (2003)
 CDF: PRL 93 072001 (2004)
 D0: PRL 93 162002 (2004)

• $T_{cc}/X(3872)$ lies nearby $DD^*/D\bar{D}^*$

==> meson-meson molecule?

==>Strong attractive interaction

• Gaussian potential

 $V(r) = V_0 \exp(-m^2 r^2)$

- $m < -\pi$ exchange $(m = m_{\pi})$
- V_0 <- scattering lengths
- Assume dominant contribution from exotic channel (I = 0)
- Coupled-channel of two isospin channels

- Bound state like behavior for both pairs
- Stronger source size dep. for $D^0 D^{*+}$
- D^+D^{*0} cusp is not prominent

- $D^0 D^{*+}$: Strong source size dep.
- D^+D^{*-} : Small effect of the strong int. (Coulomb int dominance)
- Moderate D^+D^{*+} cusp

- $D^0 D^{*+}$: Strong source size dep.
- D^+D^{*-} : Small effect of the strong int. (Coulomb int dominance)
- Moderate D^+D^{*+} cusp

X(3872) with various assumptions

X(3872) with various assumptions

• X(3872) with short range force D^+D^{*-}

8.23 MeV $0.03 \text{ MeV} < \frac{D^0 \bar{D}^{*0}}{X(3872)}$

- Potential shape dependence $V(r) = V_0 \exp(-m^2 r^2)$ Two potentials fitted to same scattering length $a_0^{D^0 \bar{D}^{*0}} = -4.23 + i3.95 \text{fm}$
- Long range pot. : $m = m_{\pi}$
- Short range pot. : $m = m_{\rho}$

Change of the interaction range gives moderate enhancement

X(3872) with various assumptions

- $m = m_{\pi}, V_{I=1} = 0$ $m = m_{\pi}$, attractive $V_{I=1}$ - - · $m = m_{\pi}$, repulsive $V_{I=1}$ — — 1.81.6attractive $V_{I=1}$ 1.21 repulsive $V_{I=1}$ $0.8 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\frac{150}{q \, [\text{MeV}/c]}$ 50 100 * Due to the additional virtual pole around D^+D^{*-} threshold
- The strength of the cusp depends on the detailed isospin structure of the interaction.

300

R = 1 fm

200

250

Summary

- Femtoscopic correlation function in high energy nuclear collisions is a powerful tool to investigate the nature of bound state.
 - Comparison to model prediction
 - Direct extraction from C(q) data

• *D*⁻*p*

Non-interacting model can explain data but strong attractive interaction reduce the standard deviation.

• $DK(\overline{K})$: Coulomb int. dominant and consistent with chiral models $D\pi$: Opposite-charge pair shows the discrepancy from chiral models

• $DD^*/D\bar{D}^*$

The lower isospin partner channels are expected to show the strong source size dependence due to the near threshold $T_{cc}/X(3872)$ states.

Thank you for your attention!