Nature of T_{cc} with effective field theory

Tomona Kinugawa

Tetsuo Hyodo

Department of Physics, Tokyo Metropolitan University December 6th-7th ELPH workshop 2022

Model

Single-channel resonance model

Model parameters

- cutoff Λ : 140 MeV = m_{π} (π exchange)
- coupling const. g_0 : $g_0^2(B, \nu_0, \Lambda) = \frac{\pi^2}{\mu}(B + \nu_0) \left[\Lambda \kappa \arctan(\Lambda/\kappa)\right]^{-1}$
 - : bound state condition $f^{-1} = 0$ $\kappa = \sqrt{2\mu B}$.

 $T_{cc}: B = 0.36 \text{ MeV}$ LHCb Collaboration, Nature Phys. 18 (2022) no.7, 751-754.

- \cdot energy of bare 4-quark state u_0
- determined by other models : e.g. $\nu_0 = 7 \text{ MeV}$ (quark model) M. Karliner and J. L. Rosner, PRL 119, 202001 (2017)
- varied in the region : $-B \le \nu_0 \le \Lambda^2/(2\mu)$
 - : to have $g_0^2 \ge 0$ & applicable limit of EFT

fixed
$$B, \Lambda \xrightarrow{g_0^2(\Lambda, \nu_0, B)} \nu_0$$
 : free parameter bound state condition

Calculation

• X as a function of ν_0 for natural energy scale

- natural energy scale : $B_{\rm nat} = \Lambda^2/(2\mu) \sim 10$ MeV, $\Lambda = 140~{\rm MeV}~(\pi~{\rm exchange})$

- X > 0.5 only for 25 % of ν_0 = elementary dominant ... bare state origin

$\odot X$ as a function of ν_0 for shallow bound state

- weakly-bound state : $B_{\rm nat} \gg B_{\rm wb} = 0.1\,$ MeV, $\Lambda = 140~{\rm MeV}~(\pi~{\rm exchange})$

- X > 0.5 for 88 % of ν_0 = composite dominant

∵ low-energy universality !

- X > 0.5 for 78 % of ν_0 = composite dominant

- fine tuning is necessary to realize X < 0.5

Application to T_{cc}

- X (single) ~ $X_1 + X_2$
- composite nature is shared by both channels
 - : threshold energy difference cannot be neglected

Summary

- internal structure of T_{cc} \triangleleft EFT & compositeness
- model with bare 4-quark state coupled to the scattering state
- shallow bound state is composite dominant even from bare state
 - : low-energy universality
- T_{cc} is composite dominant for most of ν_0 for 1channel

- composite nature is shared by both channels with coupled channel effect
- T_{cc} is composite dominant even with decay

Nature of T_{cc} with effective field theory

Tomona Kinugawa

Tetsuo Hyodo

Department of Physics, Tokyo Metropolitan University December 6th-7th ELPH workshop 2022

Calculation

composite dominant

∵ low-energy universality ! natural energy scale $B_{\rm nat} = \Lambda^2/(2\mu)$