Structure of X(3872) with hadronic potentials coupled to quarks

Ibuki Terashima (Tokyo Metropolitan University) Tetsuo Hyodo (Tokyo Metropolitan University)

ELPH C033 (2022) @Sendai + zoom on Dec. 6th

TOKYO METROPOLITAN UNIVERSITY

東京都立大学

$$V^{\bar{c}c}(r) = -\frac{A}{r} + \sigma r + V_0 \underset{r \to \infty}{\longrightarrow} \infty : \underline{\text{Confinement}}$$

$$V^{\bar{D}^*D}(r) = K_{\bar{D}^*D} \underbrace{\exp[-m_H r]}_{r} + \cdots \longrightarrow 0 : \underbrace{\text{Scat}}_{r \to \infty}$$

- $V^{\bar{c}c}(r)$ and $V^{\bar{D}^*D}(r)$ are calculated independently This Study

- Apply V_{eff}^{D*D} to the model of X(3872)

- Hamiltonian H with coupled-channel between $\bar{c}c$ and \bar{D}^*D
- Eliminate $\bar{c}c$ to obtain effective potential $V_{eff}^{D^*D}(\mathbf{r},\mathbf{r}',E)[1,2]$

$$V_{\text{eff}}^{\bar{D}*D}(\boldsymbol{r},\boldsymbol{r}',E) = V^{\bar{D}*D}(\boldsymbol{r})\delta(\boldsymbol{r}')$$
When

$$\cdot V^{\bar{D}*D}(\boldsymbol{r}) = 0$$

$$\cdot \langle \phi_n | V^t | \boldsymbol{r}_{\bar{D}*D} \rangle = g_0 e^{-\mu r} / r$$

$$\cdot \text{ only take } n = 0$$

$$g_0 : \text{ coupling constant,}$$

$$E_0 : \text{ binding energy of } \bar{c}c$$

$$\mu : \text{ cut-off constant}$$

$$[1] H$$

 8	$\frac{2}{0}$	$e^{-\mu r}$	$e^{-\mu r}$
<i>E</i> –	E_0	r'	r

. Feshbach, Ann. Phys. 5, 357 (1958); ibid., 19, 287 (1962) [2] I. Terashima, T. Hyodo arXiv:2208.14075 [hep-ph]

Formulation : Conversion to local

(1) Formal derivative expansion

Express non-local potential in terms of derivative of local potential by Taylor expansion directly

$$V_{\text{eff}}^{\bar{D}*D}(\boldsymbol{r}, \boldsymbol{r}', E) = \frac{g_0^2}{E - E_0} \frac{e^{-\mu r}}{r} \frac{e^{-\mu r'}}{r'}$$
 derivative

(2) HAL QCD method [S.Aoki and K.Yazaki, PTEP 2022, no.3, 033B04 (2022)]

Construct from wave function $\psi_k(r)$ obtained from non-local

potentials wit

h momentum
$$k = \sqrt{2mE}$$

 $V^{\text{HAL}}(r, E) = E + \frac{1}{2mr\psi_k(r)} \frac{d^2}{dr^2} \left[r\psi_k(r) \right] + O(\nabla^2)$

• $\psi_{l}(r)$ can be solved analytically by virtue of Yukawa potential

ELPH C033 (2022) @Sendai + zoom on Dec. 6th

$$V^{\text{formal}}(r, E) = \frac{4\pi g_0^2}{\mu^2 (E - E_0)} \frac{e^{-\mu r}}{r} + O(\nabla)$$

'e expansion

Note : Analytics nature of HAL QCD method

ELPH C033 (2022) @Sendai + zoom on Dec. 6th

•	k=0.999mu, c=-0

Construct a model of X(3872)

 $\cdot g_0$ is determined to reproduce mass of X(3872) •cut-off μ takes as energy of $\pi^{[4]}$

lightest meson

• Binding energy E_0 of $\bar{c}c$

$$E_0 = m_{c\bar{c}}^{[3]} - m_{D^0}^{[4]} - m_{\bar{D}^{*0}}^{[4]}$$

•Reduced mass $m = \frac{m_{D^0} + m_{\bar{D}^{*0}}}{m_{D^0} + m_{\bar{D}^{*0}}}$ $m_{D0}m_{\bar{D}^{*0}}$

[3] S. Godfrey and N. Isgur, Phys. Rev. D, **32**, 189 (1985), [4] PDG Live ELPH C033 (2022) @Sendai + zoom on Dec. 6th

$$V^{\text{HAL}}(r, E) = \frac{1}{2mr\psi_k(r)} \frac{d^2}{dr^2} \left[r\psi_k(r) \right] +$$

Result: compare in X(3872)

ELPH C033 (2022) @Sendai + zoom on Dec. 6th

Result : Phase sift δ

Compare phase shift $\delta(k)$

from $V_0^{\text{formal}}(r, E = 0)$ and $V^{\text{HAL}}(r, E = 0)$, with exact $\delta(k)$ from model conditions (μ, g_0)

 δ from HAL QCD method is more consistent with exact δ , especially for small k

Scattering length from V^{HAL} is more correct

Summary

- Consider channel coupling of X(3872) between $V^{\bar{c}c}(r)$ and $V^{D^*D}(r)$
- and 2HAL QCD method V_0^{HAL}
 - V^{formal} and V^{HAL} are different
 - Phase shift δ from V^{HAL} is more consistent with exact δ

Future outlook

- obtained for each conversion
- Add $D^{*+}D^{\pm}$ channel [M. Takizawa, PTEP **2013**, 093 D 01 (2013)]

SNP School 2022 @Sendai + zoom on Oct. 25th

• Convert $V_{eff}^{\overline{DD}}(E)$ obtained by eliminating $c\overline{c}$ channel, non-local to local • compare of two conversion methods (1) formal derivative expansion V_0^{formal}

Comparison of what physical quantities (e.g., scattering amplitude) are

