Pole determination of first discovered

pentaquark with strangeness

arXiv:2208.11995

Satoshi Nakamura

(Univ. of Science and Technology of China)

Collaborator: Jia-Jun Wu (Univ. of Chinese Academy of Sciences)

Introduction

New LHCb data on $B^- \to J/\psi \Lambda \overline{p}$

arXiv:2210.10346

Discovery (>10 σ) of first pentaquark candidates with strangeness ($c\bar{c}uds$)

 $P_{\psi s}^{\Lambda}(4338)$ propertiers:

$M = 4338.2 \pm 0.7 \pm 0.4 \text{ MeV}$	(mass)
$\Gamma = 7.0 \pm 1.2 \pm 1.3$ MeV	(width)
$J^{P} = 1/2^{-1}$	(spin parity)

M, Γ , and J^P are crucial information to understand

the nature (hadron molecule, compact pentaquark, etc.) of $P_{\psi s}^{\Lambda}(4338)$

Q: *M* and *Γ* determined by LHCb are reliable ?

Basic assumption in LHCb amplitude analysis : Breit-Wigner (BW) amplitude well simulates $P_{\psi s}^{\Lambda}(4338)$

Resonance-like peak is right on the $\Xi_c \overline{D}$ threshold \rightarrow BW fit (no unitarity) ignores important physics

• Resonance-like $\Xi_c \overline{D}$ threshold cusp appears (kinematical effect) even without a pole

In the presence of a pole

- Distortion of peak shape due to $\Xi_c \overline{D}$ branch point and cut
- Rapid increase of width just above $\Xi_c \overline{D}$ threshold

M and Γ from BW fit are quetionable

What needs to be done?

- Unitary coupled-channel amplitude is fitted to data
- Poles on relevant Riemann sheets are searched by analytic continuation of the amplitude

The pole value is:

- Important knowledge reflecting QCD dynamics
- Primary basis to study the nature of the pentaquark

Possible $P_{\psi s}^{\Lambda}(4255)$?

Possibility : $\Lambda_c \overline{D}_s$ threshold cusp is enhanced by a nearby pole $P_{\psi s}^{\Lambda}(4255) \rightarrow$ to be examined

In this work

Conduct amplitude analysis on the LHCb data for $B^- \rightarrow J/\psi \Lambda \bar{p}$

 $M_{J/\psi\Lambda}$, $M_{J/\psi\bar{p}}$, $M_{\Lambda\bar{p}}$, and $\cos\theta_{K^*}$ distribution data are simultaneously fitted with a model in which $\Xi_c \overline{D} - \Lambda_c \overline{D}_s$ coupled-channel amplitude is implemented

Based on the $\Xi_c \overline{D} - \Lambda_c \overline{D}_s$ amplitude, we address:

(i) Pole position of $P_{\psi s}^{\Lambda}(4338)$

(ii) Possibility that $P_{\psi s}^{\Lambda}(4338)$ is merely a threshold cusp (no pole) (iii) Implication of large fluctuation at $\Lambda_c \overline{D}_s$ threshold

Model for $B^- \to J/\psi \Lambda \overline{p}$

All visible structures are at thresholds

→ threshold cusps enhanced or suppressed by hadron scattering and pole (reasonable assumption)

Data-driven *MB* contact interactions (*V*) and coupled-channel unitarity : idea similar to *K*-matrix approach

Transitions to $J/\psi\Lambda$ and $J/\psi\bar{p}$ channels are treated perturbatively; heavy-quark exchange is expected to be weak

Other mechanisms are assumed to be absorbed in ightarrow

Dalitz plot for $B^- o J/\psi \Lambda \overline{p}$

Note: No smearing due to experimental resolution is applied

 \rightarrow Peak structures seem sharper than data

Fit to LHCb data for $B^- o J/\psi\Lambda\overline{p}$

Four distribution data are simultaneously fitted

Smearing with bin width applied

 $\cos heta_{K^*} \equiv \hat{p}_\Lambda \cdot \hat{p}_{J/\psi}$ in $\Lambda ar{p}$ CM frame

 χ^2 /ndf ~ 1.20 9 parameters

Fit to LHCb data

 $\Lambda_c \overline{D}_s - \Xi_c \overline{D}$ coupled-channel scattering causes poles near $\Lambda_c \overline{D}_s$ and $\Xi_c \overline{D}$ thresholds \rightarrow enhanced threshold cusps

 J/ψ

Pole locations

Pole effects on the physical energy region (spectrum lineshape) are significantly screened by branch cut Resonance-like lineshapes are caused by kinematical threshold cusps, and poles moderately enhance them Poles are from $\Xi_c \overline{D} - \Lambda_c \overline{D}_s$ s-wave amplitude $\rightarrow J^P = 1/2^-$ poles; consistent with LHCb analysis result

Without $\Xi_c \overline{D} \to \Xi_c \overline{D}$ interaction only $\Lambda_c \overline{D}_s \to \Lambda_c \overline{D}_s$ interaction onlycoupled-channel $\Xi_c \overline{D}$ bound state $\rightarrow \otimes$ $\Lambda_c^+ D_s^-$ virtual state $\rightarrow \otimes$

Other solutions

(A) $P_{\psi s}^{\Lambda}(4255)$ pole doesn't exist; the fluctuation is just statistical

(B) $\Xi_c \overline{D} \to \Xi_c \overline{D}$ interaction has energy dependence (default result is from energy-independent interaction) (C) Nearby poles do not exist; peak structures in data are solely from threshold cusps

(A) and (B) have fit quality comparable to default fit $\Lambda_c \overline{D}_s$ threshold cusp w/o pole

(C) fit in $P_{\psi s}^{\Lambda}(4338)$ peak region is visibly worse $\rightarrow P_{\psi s}^{\Lambda}(4338)$ is not merely a threshold cusp a nearby pole exists $P_{\psi s}^{\Lambda}(4338)$

Pole locations for other solutions

Solution	$E_{ m pole}$ (MeV)	sheet $(s_{\Lambda_c \overline{D}_s} s_{\Xi_c^0 \overline{D}^0} s_{\Xi_c^+ D^-})$	w/o coupled-channel
(default)	$(4338.0 \pm 1.1) - (1.7 \pm 0.4)i$	(upp)	$\Xi_c\overline{D}$ bound pole
(A)	$(4330.7 \pm 4.0) + (3.9 \pm 5.4)i$	(pup) + (ppu), (upu) poles	$\Xi_c \overline{D}$ virtual pole
(B)	$(4337.3 \pm 1.3) - (5.1 \pm 2.5)i$	(<i>uuu</i>) + (<i>upp</i>), (<i>uup</i>) poles	$\Xi_c \overline{D}$ resonance pole
$P_{\psi s}^{\Lambda}(4255)$			
(default)	4254.6 ± 0.5	(upp)	$\Lambda_c \overline{D}_s$ virtual pole

Depending on the solutions, $P_{\psi s}^{\Lambda}(4338)$ pole is located on different Riemann-sheet \rightarrow More data needed

- Higher statistics $B^- \to J/\psi \Lambda \bar{p}$ not only pin down existence of $P_{\psi s}^{\Lambda}(4255)$ but constrain $P_{\psi s}^{\Lambda}(4338)$ pole sheet
- $\Xi_b^- \rightarrow J/\psi \Lambda K^-$ should show pole effect more clearly, since no shrinking phase-space near kinematical end \rightarrow favor or disfavor resonance pole (larger width)

Summary

- Amplitude analysis of new LHCb data of $B^- \rightarrow J/\psi \Lambda \bar{p}$
- $M_{J/\psi\Lambda}, M_{J/\psi\bar{p}}, M_{\Lambda\bar{p}}$, and $\cos \theta_{K^*}$ distributions are fitted simultaneously; $\chi^2/\text{ndf} \sim 1.20$
- First pole determination of first discovered pentaquark candidate with strangeness $P_{\psi s}^{\Lambda}(4338)$
 - -- important in its own right, knowledge of QCD dynamics
 - -- primary basis to study the nature of $P_{\psi s}^{\Lambda}(4338)$
- Data disfavors hypothesis that the $P_{\psi s}^{\Lambda}(4338)$ peak is just a kinematical effect
- $P_{\psi s}^{\Lambda}(4255)$ might exist, and its pole is determined
- Alternative solutions have $P_{\psi s}^{\Lambda}(4338)$ poles on different Riemann sheets

 \rightarrow future data needed to discriminate them

Recent theoretical papers identified their $\Xi_c \overline{D}$ bound states with $P_{\psi s}^{\Lambda}(4338)$

Common argument : their $\Xi_c \overline{D}$ bound state energy is consistent with M and Γ from LHCb analysis

 $M = 4338.2 \pm 0.7 \pm 0.4 \text{ MeV}$ $\Gamma = 7.0 \pm 1.2 \pm 1.3 \text{ MeV}$

1.0 (2.9) MeV above $\Xi_c^+ D^- (\Xi_c^0 \overline{D}^0)$ threshold, indicating resonance not bound state, even considering error

 \rightarrow The LHCb result rules out (or disfavors) the bound state solutions

Good news for $\Xi_c \overline{D}$ bound state model

BW fit employed in the LHCb analysis is unsuitable to describe $P_{\psi s}^{\Lambda}(4338)$

Our proper pole extraction (default model) supports $\Xi_c \overline{D}$ bound state solution for $P_{\psi s}^{\Lambda}(4338)$

Theoretical calculations of $P_{\psi s}^{\Lambda}(4338)$ should be compared with our pole values; not BW values

Pole locations for other solutions

Soluti	on	E _{pole} (MeV)	sheet ($S_{\Lambda_c \overline{D}_s} S_{\Xi_c^0 \overline{D}^0} S_{\Xi_c^+ D^-})$
default	$P_{\psi s}^{\Lambda}(4338)$	$(4338.0 \pm 1.1) - (1.7 \pm 0.4)$	i (up)	(p) $\Xi_c \overline{D}$ bound pole
	$P_{\psi s}^{\Lambda}(4255)$	4254.6 ± 0.5	(up)	$(p) \qquad \Lambda_c \overline{D}_s \text{ virtual pole}$
(A)	$P_{\psi s}^{\Lambda}(4338)$	$(4334.2 \pm 3.6) + (5.3 \pm 5.7)$	i (pp	<i>u</i>)
		$(4330.7 \pm 4.0) + (3.9 \pm 5.4)$	i (pu	p)
		$(4336.4 \pm 1.4) - (0.1 \pm 1.3)$	i (up)	u)
(B)	$P_{\psi s}^{\Lambda}(4338)$	$(4338.9 \pm 1.7) - (2.2 \pm 0.7)$	i (upp	p)
		$(4338.8 \pm 1.9) - (4.3 \pm 2.1)$	i (uu)	p)
		$(4337.3 \pm 1.3) - (5.1 \pm 2.5)$	i (uu	$(u) \qquad \Xi_c \overline{D}$ resonance pole

Impact of pole on amplitude on the physical energy axis (data)

Two-body scattering amplitude *T* is implemented in three-body decay amplitude

