Pole determination of first discovered

pentaquark with strangeness

arXiv:2208.11995

Satoshi Nakamura

(Univ. of Science and Technology of China)

Collaborator: Jia-Jun Wu
(Univ. of Chinese Academy of Sciences)

Introduction

New LHCb data on $B^{-} \rightarrow J / \psi \Lambda \bar{p}$

Discovery $(>10 \sigma$) of first pentaquark candidates with strangeness (c $\bar{c} u d s)$ $P_{\psi s}^{\Lambda}(4338)$ propertiers:

$$
M=4338.2 \pm 0.7 \pm 0.4 \mathrm{MeV} \quad \text { (mass) }
$$

$$
\Gamma=7.0 \pm 1.2 \pm 1.3 \mathrm{MeV} \quad \text { (width) }
$$

$$
J^{P}=1 / 2^{-}
$$

(spin parity)
M, Γ, and J^{P} are crucial information to understand
the nature (hadron molecule, compact pentaquark, etc.) of $P_{\psi s}^{\Lambda}(4338)$

Q: M and Γ determined by LHCb are reliable?

Basic assumption in LHCb amplitude analysis: Breit-Wigner (BW) amplitude well simulates $P_{\psi S}^{\Lambda}(4338)$

Resonance-like peak is right on the $\Xi_{c} \bar{D}$ threshold
\rightarrow BW fit (no unitarity) ignores important physics

- Resonance-like $\Xi_{c} \bar{D}$ threshold cusp appears (kinematical effect) even without a pole

In the presence of a pole

- Distortion of peak shape due to $\Xi_{C} \bar{D}$ branch point and cut
- Rapid increase of width just above $\Xi_{c} \bar{D}$ threshold
M and Γ from $B W$ fit are quetionable

What needs to be done?

Ans. Replace BW fit with the proper pole extraction method \leftarrow The main task of this work

- Unitary coupled-channel amplitude is fitted to data
- Poles on relevant Riemann sheets are searched by analytic continuation of the amplitude

The pole value is:

- Important knowledge reflecting QCD dynamics
- Primary basis to study the nature of the pentaquark

Possible $P_{\psi_{s}}^{\Lambda}(4255)$?

Possibility : $\Lambda_{C} \bar{D}_{S}$ threshold cusp is enhanced by a nearby pole $P_{\psi s}^{\Lambda}(4255) \rightarrow$ to be examined

In this work

Conduct amplitude analysis on the LHCb data for $B^{-} \rightarrow J / \psi \Lambda \bar{p}$
$M_{J / \psi \Lambda}, M_{J / \psi \bar{p}}, M_{\Lambda \bar{p}}$, and $\cos \theta_{K^{*}}$ distribution data are simultaneously fitted with a model in which $\Xi_{c} \bar{D}-\Lambda_{C} \bar{D}_{S}$ coupled-channel amplitude is implemented

Based on the $\Xi_{c} \bar{D}-\Lambda_{c} \bar{D}_{s}$ amplitude, we address:
(i) Pole position of $P_{\psi s}^{\Lambda}$ (4338)
(ii) Possibility that $P_{\psi s}^{\Lambda}$ (4338) is merely a threshold cusp (no pole)
(iii) Implication of large fluctuation at $\Lambda_{c} \bar{D}_{s}$ threshold

Model

Model for $B^{-} \rightarrow J / \psi \Lambda \bar{p}$

All visible structures are at thresholds
\rightarrow threshold cusps enhanced or suppressed by hadron scattering and pole (reasonable assumption)

$\Lambda_{c} \bar{D}_{s}-\Xi_{c} \bar{D}-J / \psi \Lambda$ (T) and $\bar{\Lambda}_{c} D-J / \psi \bar{p}\left(T_{2}\right)$ coupled-channel s-wave amplitudes are implemented

Data-driven $M B$ contact interactions (V) and coupled-channel unitarity : idea similar to K-matrix approach
Transitions to $J / \psi \Lambda$ and $J / \psi \bar{p}$ channels are treated perturbatively; heavy-quark exchange is expected to be weak
Other mechanisms are assumed to be absorbed in \rightarrow C

Results

Dalitz plot for $B^{-} \rightarrow J / \psi \Lambda \bar{p}$

LHCb seminar 07/05/2022

Note: No smearing due to experimental resolution is applied
\rightarrow Peak structures seem sharper than data

Fit to LHCb data for $B^{-} \rightarrow J / \psi \Lambda \bar{p}$

Four distribution data

 are simultaneously fittedSmearing with bin width applied

$\cos \theta_{K^{*}} \equiv \hat{p}_{\Lambda} \cdot \hat{p}_{J / \psi}$ in $\Lambda \bar{p}$ CM frame

$$
\begin{gathered}
\chi^{2} / \text { ndf } \sim 1.20 \\
9 \text { parameters }
\end{gathered}
$$

Fit to LHCb data

Repulsive $\bar{\Lambda}_{c} D$ interaction causes suppressed cusp, increasing $M_{J / \psi \bar{p}}$ lineshape

Contribution of
phase-space-like shape

Pole locations

$$
+\ldots \quad \leftarrow \text { Fitted to LHCb data }
$$

+ infinite loops

$$
M B=\Lambda_{c} \bar{D}_{s}, \Xi_{c} \bar{D}
$$

Analytically continued to complex E where $T(E) \sim 1 /\left(E-E_{\text {pole }}\right)$

Pole locations

Pole effects on the physical energy region (spectrum lineshape) are significantly screened by branch cut
Resonance-like lineshapes are caused by kinematical threshold cusps, and poles moderately enhance them
Poles are from $\Xi_{c} \bar{D}-\Lambda_{c} \bar{D}_{s} s$-wave amplitude $\rightarrow J^{P}=1 / 2^{-}$poles; consistent with LHCb analysis result

Without
coupled-channel effects
$\Xi_{c} \bar{D} \rightarrow \Xi_{c} \bar{D}$ interaction only
$\Xi_{C} \bar{D}$ bound state \rightarrow
$\Lambda_{c} \bar{D}_{s} \rightarrow \Lambda_{c} \bar{D}_{s}$ interaction only

$$
\Lambda_{c}^{+} D_{s}^{-} \text {virtual state } \rightarrow \otimes
$$

(A) $P_{\psi s}^{\Lambda}(4255)$ pole doesn't exist; the fluctuation is just statistical
(B) $\Xi_{c} \bar{D} \rightarrow \Xi_{c} \bar{D}$ interaction has energy dependence (default result is from energy-independent interaction)
(C) Nearby poles do not exist; peak structures in data are solely from threshold cusps

(A) and (B) have fit quality comparable to default fit $\Lambda_{c} \bar{D}_{S}$ threshold cusp w/o pole
(C) fit in $P_{\psi s}^{\Lambda}$ (4338) peak region is visibly worse
$\rightarrow P_{\psi s}^{\Lambda}(4338)$ is not merely a threshold cusp
a nearby pole exists

Solution	$E_{\text {pole }}(\mathrm{MeV})$	sheet $\left(s_{\Lambda_{c} \bar{D}_{s}} S_{\left.\Xi_{c}^{0} \bar{D}^{0} S_{\Xi_{c}^{+} D^{-}}\right)}\right.$	w/o coupled-channel
(default)	$(4338.0 \pm 1.1)-(1.7 \pm 0.4) i$	$(u p p)$	$\Xi_{c} \bar{D}$ bound pole
(A)	$(4330.7 \pm 4.0)+(3.9 \pm 5.4) i$	$($ pup $)+(p p u),(u p u)$ poles	$\Xi_{c} \bar{D}$ virtual pole
(B)	$(4337.3 \pm 1.3)-(5.1 \pm 2.5) i$	$(u u u)+(u p p),(u u p)$ poles	$\Xi_{c} \bar{D}$ resonance pole

$P_{\psi s}^{\Lambda}(4255)$

(default)

$$
4254.6 \pm 0.5
$$

(upp)
$\Lambda_{c} \bar{D}_{s}$ virtual pole

Depending on the solutions, $P_{\psi s}^{\Lambda}(4338)$ pole is located on different Riemann-sheet \rightarrow More data needed

- Higher statistics $B^{-} \rightarrow J / \psi \Lambda \bar{p}$ not only pin down existence of $P_{\psi S}^{\Lambda}(4255)$ but constrain $P_{\psi S}^{\Lambda}(4338)$ pole sheet
- $\Xi_{b}^{-} \rightarrow J / \psi \Lambda K^{-}$should show pole effect more clearly, since no shrinking phase-space near kinematical end \rightarrow favor or disfavor resonance pole (larger width)

Summary

Summary

- Amplitude analysis of new LHCb data of $B^{-} \rightarrow J / \psi \Lambda \bar{p}$
- $M_{J / \psi \Lambda}, M_{J / \psi \bar{p}}, M_{\Lambda \bar{p}}$, and $\cos \theta_{K^{*}}$ distributions are fitted simultaneously; $\chi^{2} / \mathrm{ndf} \sim 1.20$
- First pole determination of first discovered pentaquark candidate with strangeness $P_{\psi s}^{\Lambda}(4338)$
-- important in its own right, knowledge of QCD dynamics
-- primary basis to study the nature of $P_{\psi s}^{\Lambda}(4338)$
- Data disfavors hypothesis that the $P_{\psi s}^{\Lambda}(4338)$ peak is just a kinematical effect
- $P_{\psi s}^{\Lambda}(4255)$ might exist, and its pole is determined
- Alternative solutions have $P_{\psi s}^{\Lambda}(4338)$ poles on different Riemann sheets
\rightarrow future data needed to discriminate them

Recent theoretical papers identified their $\Xi_{c} \bar{D}$ bound states with $P_{\psi s}^{\Lambda}(4338)$
Common argument : their $\Xi_{c} \bar{D}$ bound state energy is consistent with M and Γ from LHCb analysis
1.0 (2.9) MeV above $\Xi_{c}^{+} D^{-}\left(\Xi_{c}^{0} \bar{D}^{0}\right)$ threshold, indicating resonance not bound state, even considering error

```
The LHCb result rules out (or disfavors) the bound state solutions
```


Good news for $\Xi_{c} \bar{D}$ bound state model

BW fit employed in the LHCb analysis is unsuitable to describe $P_{\psi s}^{\Lambda}(4338)$
Our proper pole extraction (default model) supports $\Xi_{c} \bar{D}$ bound state solution for $P_{\psi s}^{\Lambda}(4338)$
Theoretical calculations of $P_{\psi s}^{\Lambda}(4338)$ should be compared with our pole values; not BW values

Backup

Solution		$E_{\text {pole }}(\mathrm{MeV})$	sheet $\left(s_{\Lambda_{c} \bar{D}_{s}} S_{\Xi_{c}^{0} \bar{D}^{0}} S_{\Xi_{c}^{+} D^{-}}\right)$	
default	$P_{\psi s}^{\Lambda}(4338)$	$(4338.0 \pm 1.1)-(1.7 \pm 0.4) i$	$(u p p)$	$\Xi_{c} \bar{D}$ bound pole
	$P_{\psi s}^{\Lambda}(4255)$	4254.6 ± 0.5	$(u p p)$	$\Lambda_{c} \bar{D}_{s}$ virtual pole
	$P_{\psi s}^{\Lambda}(4338)$	$(4334.2 \pm 3.6)+(5.3 \pm 5.7) i$	$($ ppu $)$	
		$(4330.7 \pm 4.0)+(3.9 \pm 5.4) i$	$($ pup $)$	
		$(4336.4 \pm 1.4)-(0.1 \pm 1.3) i$	$($ upu $)$	
(B)	$P_{\psi s}^{\Lambda}(4338)$	$(4338.9 \pm 1.7)-(2.2 \pm 0.7) i$	$(u p p)$	
		$(4338.8 \pm 1.9)-(4.3 \pm 2.1) i$	$(u u p)$	
		$(4337.3 \pm 1.3)-(5.1 \pm 2.5) i$	$(u u u)$	$\Xi_{c} \bar{D}$ resonance pole

Impact of pole on amplitude on the physical energy axis (data)

- Pole far from threshold

Breit-Wigner form is good approximation

- Pole near threshold

$1^{\text {st }}$ step : Obtain partial wave amplitudes from data $2^{\text {nd }}$ step $:$ Fit partial wave amplitudes with a model

In most three-body decay analysis we directly fit data with model

Model

Two-body scattering amplitude T is implemented in three-body decay amplitude

K-matrix model $\quad T(E)=\frac{K}{1-i \rho K}$

$$
\overline{M_{J / \psi \Lambda}-M_{B W}+i \Gamma_{B W} / 2}
$$

