Study of excited Ξ baryons based on the ALICE experiment

Tokyo Metropolitan University
Presenter ：Takuma Nishibuchi
Collaborator ：Tetsuo Hyodo

－$\Xi(1620)$ and $\Xi(1690)$ peaks in the $\Xi_{c} \rightarrow \pi \pi \Xi$ spectrum by Belle collaboration［1］．
－Peaks are close to thresholds of $\bar{K} \Lambda$ and $\bar{K} \Sigma$ ？
－Threshold effect in the spectrum？

Invariant mass distribution of $\pi \Xi$ in the $\Xi_{c} \rightarrow \pi \pi \Xi$ decay［1］．
［1］Belle collaboration，M．Sumihama et al．，Phys．Rev．Lett．122， 072501 （2019）．

Motivation by ALICE

－The scattering length of $K^{-} \Lambda$ was determined with femtoscopy in $\mathrm{Pb}-\mathrm{Pb}$ collisions by ALICE experiment as $f_{0}=0.27+0.40 i \mathrm{fm}[2]$ ．
－The scattering length f_{0} determines real and imaginary part of threshold．
－Aim of this talk
－Construction of the model of $\Xi(1620)$ which reproduces the Belle data．
－Construction of the model of $\Xi(1620)$ which reproduces the ALICE data．
［2］S．Acharya et al．（ALICE Collaboration）Phys．Rev．C 103， 055201
Scattering length f_{0}

Image of the scattering length on spectrum

Formulation

Coupled－channel meson－baryon scattering amplitude $T_{i j}(W)$ at total energy W ． Scattering equation

$$
T_{i j}(W)=V_{i j}(W)+V_{i k}(W) G_{k}(W) T_{k j}(W)
$$

$V_{i j}(W) \cdots$ Interaction kernel
$G_{i}(W) \cdots$ Loop function

$$
T_{i j}(W)=V_{i j}(W)+V_{i k}(W) G_{k}(W) V_{k j}(W)+V_{i k}(W) G_{k}(W) V_{k l}(W) G_{l}(W) V_{l j}(W)+\cdots
$$

The solution of the equation is obtained as

$$
T_{i j}(W)=\left[[V(W)]^{-1}-G(W)\right]_{i j}^{-1}
$$

Formulation

$V_{i j}(W) \cdots$ Interaction kernel（Weinberg－Tomozawa term）
s－wave interaction satisfying chiral low energy theorem．

$$
V_{i j}(W)=-\frac{C_{i j}}{4 f_{i} f_{j}} N_{i} N_{j}\left(2 W-M_{i}-M_{j}\right)
$$

f_{i} ：Meson decay constant，$C_{i j}$ ：Group theoretical coefficient， M_{i} ：Baryon Mass，N_{i} ：kinematical coefficient
$G_{i}\left(W, a_{i}\right) \cdots$ Loop function
（Divergence renormalized by dimensional regularization）

$$
G_{i}(W) \rightarrow G_{i}\left(W, a_{i}\right)
$$

W ：Total energy，a_{i} ：subtraction constant

Scattering amplitude of previous study

Previous work about $\Xi(1620)$［3］
$a_{i}=-2$（all channels）
$M_{R}=1607 \mathrm{MeV}, \Gamma_{R}=280 \mathrm{MeV}$.
－Scattering amplitude F of $\pi \Xi$

$$
F(W)=-\frac{2 M_{1} T_{11}(W)}{8 \pi W}
$$

No distinct peak of imaginary part due to broad decay width

［3］A．Ramos，E．Oset and C．Bennhold Phys．Rev．Lett． 89.252001 （2002）．

Model for Belle result

．Belle result ：$M_{R}=1610 \mathrm{MeV}, \Gamma_{\mathrm{R}}=60 \mathrm{MeV}$
－Based on the peak position，we define $z_{\mathrm{ex}}=[1610-30 i] \mathrm{MeV}$ ．
．z_{th} ：Pole in theoretical model

$$
\Delta z=\left|z_{\mathrm{th}}-z_{\mathrm{ex}}\right|
$$

－We minimize Δz by adjusting
subtraction constants $a_{\pi \Xi}$ and $a_{\bar{K} \Lambda}[4]$ ．

－Pole at complex plane

$$
z=M_{R}-\frac{i}{2} \Gamma_{R}
$$

$M_{R} \cdots$ Mass of resonance
$\Gamma_{R} \cdots$ Decay width of resonance
［4］T．Nisihibuchi and T．Hyodo，EPJ Web of Conferences 271， 10002 （2022）

Model for Belle result

．Belle result ：$M_{R}=1610 \mathrm{MeV}, \Gamma_{\mathrm{R}}=60 \mathrm{MeV}$
－Based on the peak position，we define $z_{\mathrm{ex}}=[1610-30 i] \mathrm{MeV}$ ．
．z_{th} ：Pole in theoretical model

$$
\Delta z=\left|z_{\mathrm{th}}-z_{\mathrm{ex}}\right|
$$

－We minimize Δz by adjusting
subtraction constants $a_{\pi \Xi}$ and $a_{\bar{K} \Lambda}[4]$ ．

$$
\begin{aligned}
& \Delta z=0.1 \mathrm{MeV} \text { is achieved } \\
& \text { at } a_{\pi \Xi}=-4.19 \text { and } a_{\bar{K} \Lambda}=-0.14 .
\end{aligned}
$$

［4］T．Nisihibuchi and T．Hyodo，EPJ Web of Conferences 271， 10002 （2022）

Model for Belle result

－$\Xi(1620)$ in this study（Thick lines）

－Previous study and Breit－Wigner distribution with a pole at the same position（Thin lines）
－In comparison with previous study，there is a distinct peak on real axis like Belle result．
－In comparison with Breit－Wigner distribution， the peak position is shifted and the shape is distorted by the threshold effect．

Acomparison with Breit－Wigner distribution

Model for ALICE experiment

.$f_{0} \cdots$ the scattering length of $K^{-} \Lambda$
．ALICE experiment：$f_{\text {ALICE }}=0.27+0.40 i \mathrm{fm}$
．Previous work：$f_{0}=-0.07+0.21 i \mathrm{fm}$
．Belle model：$f_{0}=-0.75+0.93 i f m$
．We construct the model with $f_{\text {ALICE }}$ ．
．f_{th} ：scattering length in theoretical model

$$
\Delta f=\left|f_{\mathrm{th}}-f_{\mathrm{ALICE}}\right|
$$

．We minimize Δf by adjusting subtraction constants $a_{\pi \Xi}$ and $a_{\bar{K} \Lambda}$ ．

Model for ALICE experiment

.$f_{0} \cdots$ the scattering length of $K^{-} \Lambda$
．ALICE experiment：$f_{\text {ALICE }}=0.27+0.40 i \mathrm{fm}$
．Previous work：$f_{0}=-0.07+0.21 i \mathrm{fm}$
．Belle model：$f_{0}=-0.75+0.93 i f m$
．We construct the model with $f_{\text {ALICE }}$ ．
．f_{th} ：scattering length in theoretical model

$$
\Delta f=\left|f_{\mathrm{th}}-f_{\mathrm{ALICE}}\right|
$$

Density plot of Δf on $a_{\bar{K} \Lambda}-a_{\pi \Xi}$ plane
．We minimize Δf by adjusting subtraction
constants $a_{\pi \Xi}$ and $a_{\bar{K} \Lambda}$ ．
$f_{\mathrm{th}}=0.27+0.40 i \mathrm{fm}$ is achieved at $a_{\pi \Xi}=-2.90$ and $a_{\bar{K} \Lambda}=0.36$

Result of model for ALICE

－We plot the scattering amplitude with $a_{\pi \Xi}=-2.90, a_{\bar{K} \Lambda}=0.36$ and $f_{\mathrm{th}}=0.27+0.40 i \mathrm{fm}$ in right figure．
－There are no peaks in the spectrum，but a cusp at the threshold．
－There are no poles on the physically relevant Riemann sheets．

The error bar of real part of $f_{\text {ALICE }}$
\longmapsto The error bar of imaginary part of $f_{\text {ALICE }}$

AThe scattering amplitudes of ALICE model

Consistency of ALICE and Belle

Is there a model which satisfies both Belle and ALICE？
\rightarrow We consider the error of each experiment．
$\mathrm{M}_{\mathrm{R}} \simeq 1610.4_{-7.3}^{+6.1} \mathrm{MeV}, \Gamma_{R} \simeq 59.9_{-8.5}^{+5.6} \mathrm{MeV}$
$\operatorname{Re} f_{0} \simeq 0.27 \pm 0.14 \mathrm{fm}, \operatorname{Im} f_{0} \simeq 0.40 \pm 0.13 \mathrm{fm}$
－There is no parameter region which satisfies both ALICE scattering length and the

Density plot of Δf on $a_{\bar{K} \Lambda}-a_{\pi \Xi}$ plane assumption of pole at $\mathrm{M}_{\mathrm{R}}-i \Gamma_{R} / 2$ ．
－To compare with Belle data，we need to use the $\pi \Xi$ spectrum．

Conclusion

－We construct the model to reproduce the Belle data of the $\pi \Xi$ spectrum and the one to reproduce the $K^{-} \Lambda$ scattering length by ALICE data．
－We construct the model for Belle with a pole at $1610-30 i \mathrm{MeV}$ ．We find that the near－ threshold resonance peak is distorted by the threshold effect．
－In the model for ALICE，the scattering amplitude shows the cusp at $K^{-} \Lambda$ threshold． There are no pole of $\Xi(1620)$ in physically relevant Riemann sheets．
－There is no parameter region which satisfies both ALICE scattering length and the assumption of pole near the $K^{-} \Lambda$ threshold．Does the ALICE model reproduce Belle $\pi \Xi$ spectrum？
－Future plan：study of $\Xi(1690)$ ，calculation of $\Xi_{c} \rightarrow \pi \pi \Xi$ decay．

