Study of excited E baryons based on the ALICE experiment

Tokyo Metropolitan University Presenter : Takuma Nishibuchi Collaborator : Tetsuo Hyodo

Motivation by Belle

- $\Xi(1620)$ and $\Xi(1690)$ peaks in the $\Xi_c \rightarrow \pi\pi\Xi$ spectrum by Belle collaboration [1].
- Peaks are close to thresholds of $\bar{K}\Lambda$ and $\bar{K}\Sigma$?
- Threshold effect in the spectrum?

[1]Belle collaboration, M.Sumihama et al., Phys. Rev. Lett. 122, 072501 (2019).

ELPH研究会C033 ハドロン分光に迫る反応と構造の物理 @sendai 7th December 2022

Invariant mass distribution of $\pi \Xi$ in the $\Xi_c \rightarrow \pi \pi \Xi$ decay [1].

Motivation by ALICE

- The scattering length of $K^-\Lambda$ was determined with femtoscopy in Pb-Pb collisions by ALICE experiment as $f_0 = 0.27 + 0.40i$ fm[2].
- The scattering length f_0 determines real and imaginary part of threshold.
 - Aim of this talk
- Construction of the model of $\Xi(1620)$ which
- reproduces the Belle data. • Construction of the model of $\Xi(1620)$ which

reproduces the ALICE data. [2]S. Acharya et al. (ALICE Collaboration)Phys. Rev. C 103, 055201 ELPH研究会C033 ハドロン分光に迫る反応と構造の物理 @sendai 7th December 2022

The error bar of real part of length

The error bar of imaginary part of length

Formulation

Scattering equation

 $T_{ii}(W) = V_{ii}(W) + V_{ik}(W)G_{k}(W)T_{ki}(W)$

G

The solution of the equation is obtained as

 $T_{ii}(W) = [[V(W)]^{-1} - G(W)]_{ii}^{-1}$

ELPH研究会C033 ハドロン分光に迫る反応と構造の物理 @sendai 7th December 2022

Meson-baryon multiple scattering

Formulation

 $V_{ii}(W)$...Interaction kernel (Weinberg-Tomozawa term) s-wave interaction satisfying chiral low energy theorem.

$$V_{ij}(W) = -\frac{C_{ij}}{4f_i f_j} N_i N_j (2W - M_i - M_j)$$

- f_i : Meson decay constant, C_{ii} : Group theoretical coefficient,
- M_i : Baryon Mass, N_i : kinematical coefficient

 $G_i(W, a_i)$...Loop function (Divergence renormalized by dimensional regularization)

$$G_i(W) \to G_i(W, a_i)$$

W:Total energy, a_i :subtraction constant

Scattering amplitude of previous study Previous work about $\Xi(1620)$ [3]

 $a_i = -2$ (all channels)

 $M_R = 1607$ MeV, $\Gamma_R = 280$ MeV.

• Scattering amplitude F of $\pi \Xi$

$$F(W) = -\frac{2M_1T_{11}(W)}{8\pi W}$$

No distinct peak of imaginary part due to broad decay width

[3] A.Ramos, E.Oset and C.Bennhold Phys. Rev. Lett. 89.252001 (2002). ELPH研究会C033 ハドロン分光に迫る反応と構造の物理 @sendai 7th December 2022

Model for Belle result

- . Belle result : $M_R = 1610$ MeV, $\Gamma_R = 60$ MeV
- Based on the peak position, we define $z_{\rm ex} = [1610 - 30i]$ MeV.
- $. z_{th}$: Pole in theoretical model

$$\Delta z = |z_{\rm th} - z_{\rm ex}|$$

•We minimize Δz by adjusting subtraction constants $a_{\pi\Xi}$ and $a_{\bar{K}\Lambda}$ [4].

ELPH研究会C033 ハドロン分光に迫る反応と構造の物理 @sendai 7th December 2022

• Pole at complex plane

$$z = M_R - \frac{i}{2}\Gamma_R$$

 $M_R \cdots$ Mass of resonance
 $\Gamma_R \cdots$ Decay width of resonance

[4]T.Nisihibuchi and T.Hyodo, EPJ Web of Conferences 271, 10002 (2022)

Model for \mathbf{Be}_{a_i} result

- . Belle result : $M_R = 1610 \text{ MeV}_{\pi\Xi} \Gamma_R = 60 \text{ MeV}_{\Xi(1620)}$
- •Based on the peak position, we define a_i $z_{\text{ex}} = [1610 - 30i]$ MeV.
- z_{th} : Pole in theoretical model
- $\begin{array}{l} \Delta z = |z_{\pm} z_{ex}| \\ a_{\pi \Xi} = -4.19 \quad a_{\bar{K}\Lambda} = -0.14 \\ \hline Az = 0.1 \text{MeV} \\ \text{subtraction constants } a_{\pi \Xi} \text{ and } a_{\bar{K}\Lambda} [4]. \end{array}$
 - $\Delta z = 0.1$ MeV is achieved

at $a_{\pi\Xi} = -4.19$ and $a_{\bar{K}\Lambda} = -0.14$.

[4]T.Nisihibuchi and T.Hyodo, EPJ Web of Conferences 271, 10002 (2022)

Model for Belle result

- Ξ(1620)in this study (Thick lines)
- Previous study and Breit-Wigner distribution with a pole at the same position (Thin lines)
- In comparison with previous study, there is a distinct peak on real axis like Belle result.
- In comparison with Breit-Wigner distribution, the peak position is shifted and the shape is distorted by the threshold effect.

Model for ALICE experiment

- f_0 ...the scattering length of $K^-\Lambda$
- . ALICE experiment: $f_{ALICE} = 0.27 + 0.40i$ fm
- Previous work: $f_0 = -0.07 + 0.21i$ fm
- .Belle model: $f_0 = -0.75 + 0.93i$ fm
- . We construct the model with f_{ALICE} .
- f_{th} : scattering length in theoretical model

$$\Delta f = |f_{\rm th} - f_{\rm ALICE}|$$

. We minimize Δf by adjusting subtraction constants $a_{\pi\Xi}$ and $a_{\bar{K}\Lambda}$.

ELPH研究会C033 ハドロン分光に迫る反応と構造の物理 @sendai 7th December 2022

10

Model for ALICE experiment

- f_0 ...the scattering length of $K^-\Lambda$
- . ALICE experiment: $f_{ALICE} = 0.27 + 0.40i$ fm
- Previous work: $f_0 = -0.07 + 0.21i$ fm
- .Belle model: $f_0 = -0.75 + 0.93i$ fm
- . We construct the model with f_{ALICE} .
- f_{th} : scattering length in theoretical model

$$\Delta f = |f_{\rm th} - f_{\rm ALICE}|$$

. We minimize Δf by adjusting subtraction

constants $a_{\pi\Xi}$ and $a_{\bar{K}\Lambda}$. $f_{\rm th} = 0.27 + 0.40i$ fm is achieved at $a_{\pi\Xi} = -2.90$ and $a_{\bar{K}\Lambda} = 0.36$ ELPH研究会C033 ハドロン分光に迫る反応と構造の物理 @sendai 7th December 2022

Density plot of Δf on $a_{\bar{K}\Lambda} - a_{\pi\Xi}$ plane

Result of model for ALICE

• We plot the scattering amplitude with $a_{\pi\Xi} = -2.90, a_{\bar{K}\Lambda} = 0.36$ and $f_{\rm th} = 0.27 + 0.40i$ fm

in right figure.

- There are no peaks in the spectrum, but a cusp at the threshold.
- There are no poles on the physically relevant Riemann sheets.

The error bar of real part of f_{ALICE} The error bar of imaginary part of f_{ALICE}

Consistency of ALICE and Belle Is there a model which satisfies both Belle and ALICE?

 \rightarrow We consider the error of each experiment. $M_R \simeq 1610.4^{+6.1}_{-7.3} MeV, \Gamma_R \simeq 59.9^{+5.6}_{-8.5} MeV$ $\text{Re}f_0 \simeq 0.27 \pm 0.14 \text{fm}, \text{Im}f_0 \simeq 0.40 \pm 0.13 \text{fm}$

- There is no parameter region which satisfies both ALICE scattering length and the assumption of pole at $M_R - i\Gamma_R/2$.
- To compare with Belle data, we need to use the $\pi \Xi$ spectrum.

Conclusion

- reproduce the $K^-\Lambda$ scattering length by ALICE data.
- threshold resonance peak is distorted by the threshold effect.
- In the model for ALICE, the scattering amplitude shows the cusp at $K^-\Lambda$ threshold. There are no pole of $\Xi(1620)$ in physically relevant Riemann sheets.
- There is no parameter region which satisfies both ALICE scattering length and the assumption of pole near the $K^-\Lambda$ threshold.

Does the ALICE model reproduce Belle $\pi \Xi$ spectrum?

• Future plan: study of $\Xi(1690)$, calculation of $\Xi_c \rightarrow \pi \pi \Xi$ decay.

ELPH研究会C033 ハドロン分光に迫る反応と構造の物理 @sendai 7th December 2022

• We construct the model to reproduce the Belle data of the $\pi \Xi$ spectrum and the one to

• We construct the model for Belle with a pole at 1610 – 30*i* MeV. We find that the near-

4