K－pp K－ppn
 J－PARC（K1．8BR）における K中間子原子核研究の状況と展望

橋本 直（JAEA ASRC）

for the J－PARC E15／T77／E80 collaboration

Meson in nuclei

meson: quark-antiquark $(\bar{q} q)$ pair

- In nuclei, mesons are viatual particles and form nuclear potential (Yukawa theorem)
- In vacuum, mesons are real particles having own intrinsic masses (cf. meson beam)
\square Can meson be a constituent particle forming nuclei?
\square If yes, how do meson and core nucleus change?
We would like to experimentally establish such exotic nuclei

Kaonic nuclei

KbarN molecule from Lattice QCD PRL114(2015)132002.

- Strong attraction in I=O from scattering and X-ray experiements.
- $\Lambda(1405)=\bar{K} N$ molucle picture is now widely accepted Why not kaonic nucleus with additional nucleons?

The simplest one: $\bar{K} N N\left(I=1 / 2, J^{P}=0^{-}\right)$

- FINUDA: $\left(K_{\text {stopped }}^{-}, \Lambda p\right)$
- DISTO: $p p \rightarrow \Lambda p K^{+}$
- J-PARC E27: $d\left(\pi^{+}, K^{+}\right) X$

Null results

- LEPS: $p\left(\gamma, \pi^{-} K^{+}\right) X$
- HADES: $p p \rightarrow \Lambda p K^{+}$
- AMADEUS: $\mathrm{C}\left(K_{\text {stopped }}^{-}, \Lambda p\right)$
- Theoretical calculations agree on the existence of $\bar{K} N N$, but B.E. and Γ depend on the $\bar{K} N$ interaction models.
- No conclusive experimental evidence so far.

Mass number dependence

Not a complete list. sorry...
$\bar{K} N N N \quad I\left(J^{p}\right)=0\left(1 / 2^{-}\right)$
AY: PRC65(2002)044005, PLB535(2002)70.
WG: PRC79(2009)014001.
BGL: PLB712(2012)132.
OHHMH: PRC95(2017)065202.

Larger binding than $\bar{K} N N$ and similar width are predicted.

$\bar{K} N N N:$ Experimental situaion

- Some experimental searches in 2000s. No conclusive result.
- multi-N absorptions hide bound-state signals in Stop-K

Our approach: in-flight (K-, n)

- K- beam at $1 \mathrm{GeV} / \mathrm{c}$ to maximize elementary ($\mathrm{K}^{-}, \mathrm{N}$) cross sections
- Most of background processes can be kinematically separated.
- Hyperon decays and multi-nucleon absorption reactions
- Simplest target allow exclusive analysis.

J-PARC K1.8BR

- Relatively short beamline suitable for low-momentum K- beam

E15/E31@K1.8BR

Experiments @ J-PARC K1.8BR

- E15: $\bar{K} N N$ search
- 1 st data taking in 2013: forward-neutron PTEP (2015) 061D01, Λp PTEP (2016) 051D01.

```
2nd data taking in 2015 focusing on \Lambdap: PLB 789 (2019) 620, PRC 102 (2020) }044002
```

. E31: $\Lambda(1405)$ spectroscopy via $d\left(K^{-}, n\right)$

- data taking in 2018: arXiv:2209.08254
- E57: Kaonic hydrogen/deuterium 1s with SDDs
- test experiment in 2019
- E62: Kaonic helium-3/4 2p with TES
- data taking in 2018: PRL 128, 112503 (2022).

- E73/T77: lifetime measurement of light hypernuclei

$I\left(J^{p}\right)=1 / 2\left(0^{-}\right), I_{Z}=+1 / 2$
 $\bar{K} N N$ in ${ }^{3} \mathrm{He}\left(K^{-}, \Lambda p\right) n$

PHYSICAL REVIEW C 102, 044002 (2020)

Observation of a $\bar{K} N N$ bound state in the ${ }^{3} \mathrm{He}\left(K^{-}, \Lambda p\right) n$ reaction

T. Yamaga, ${ }^{1, *}$ S. Ajimura, ${ }^{2}$ H. Asano, ${ }^{1}$ G. Beer, ${ }^{3}$ H. Bhang, ${ }^{4}$ M. Bragadireanu, ${ }^{5}$ P. Buehler, ${ }^{6}$ L. Busso, ${ }^{7,8}$ M. Cargnelli, ${ }^{6}$ S. Choi, ${ }^{4}$ C. Curceanu, ${ }^{9}$ S. Enomoto, ${ }^{14}$ H. Fujioka, ${ }^{15}$ Y. Fujiwara, ${ }^{12}$ T. Fukuda, ${ }^{13}$ C. Guaraldo, ${ }^{9}$ T. Hashimoto, ${ }^{20}$
R. S. Hayano, ${ }^{12}$ T. Hiraiwa, ${ }^{2}$ M. Iio, ${ }^{14}$ M. Iliescu, ${ }^{9}$ K. Inoue, ${ }^{2}$ Y. Ishiguro, ${ }^{11}$ T. Ishikawa, ${ }^{12}$ S. Ishimoto, ${ }^{14} \mathrm{~K}$. Itahashi, ${ }^{1}$ M. Iwai, ${ }^{14}$ M. Iwasaki, ${ }^{1, \dagger}$ K. Kanno, ${ }^{12}$ K. Kato, ${ }^{11}$ Y. Kato, ${ }^{1}$ S. Kawasaki, ${ }^{10}$ P. Kienle, ${ }^{16,{ }^{+}}$H. Kou, ${ }^{15}$ Y. Ma, ${ }^{1}$ J. Marton, ${ }^{6}$ Y. Matsuda, ${ }^{17}$ Y. Mizoi, ${ }^{13}$ O. Morra, ${ }^{7}$ T. Nagae, ${ }^{11}$ H. Noumi, ${ }^{2,14}$ H. Ohnishi, ${ }^{22}$ S. Okada, ${ }^{23}$ H. Outa, ${ }^{1}$ K. Piscicchia,,${ }^{24,9}$ Y. Sada, ${ }^{22}$ A. Sakaguchi, ${ }^{10}$ F. Sakuma, ${ }^{1}$ M. Sato, ${ }^{14}$ A. Scordo, ${ }^{9}$ M. Sekimoto, ${ }^{14}$ H. Shi, ${ }^{6}$ K. Shirotori, ${ }^{2}$ D. Sirghi, ${ }^{9,5}$ F. Sirghi,,${ }^{9,5}$
S. Suzuki, ${ }^{14}$ T. Suzuki, ${ }^{12}$ K. Tanida, ${ }^{20}$ H. Tatsuno, ${ }^{21}$ M. Tokuda, ${ }^{15}$ D. Tomono, ${ }^{2}$ A. Toyoda, ${ }^{14}$ K. Tsukada, ${ }^{18}$
O. Vazquez Doce, ${ }^{9,16}$ E. Widmann, ${ }^{6}$ T. Yamazaki, ${ }^{12,1}$ H. Yim, ${ }^{19}$ Q. Zhang, ${ }^{1}$ and J. Zmeskal ${ }^{6}$ (J-PARC E15 Collaboration)

$\Lambda p n$ event selection

15-layer CDC and TOF hodoscopes

missing neutron selection

. $\Lambda p n$ events are selected with ~80\% purity.
. $\sim 20 \% \Sigma^{0} p n / \Sigma^{-} p p$ contamination

Obtained spectrum in J-PARC E15

"quasi-free" process
$m_{x}: \Lambda p$ invariant mass
$q_{x}:$ momentum transfer to Λp system
qx-indep. component below the threshold

Model functions

Quasi-free process

$$
f_{\mathrm{QQ}^{1}}\left(m_{X}, q_{X}\right)=\exp \left(-\frac{\left(m_{X}-M_{t}\left(q_{X}\right)\right)^{2}}{\sigma^{2}\left(q_{X}\right)}\right) \times{ }_{\mathrm{g}_{\mathrm{Q}}\left(q_{X}\right)}
$$

+ Broad component

2D Fit for the " $\bar{K} N N$ " state

$0.3<\mathrm{q}_{\mathrm{x}}<0.6 \mathrm{GeV} / \mathrm{c}$: Signals are well separated from other process

Fit with PWIA

$B_{\text {Kpp }} \sim \mathbf{4 0 ~ M e V}, \Gamma_{\text {Kpp }} \sim 100 \mathrm{MeV} \quad \mathbf{Q}_{\text {kpp }} \sim \mathbf{4 0 0} \mathrm{MeV}$ (c.f. $\mathrm{Q}_{\mathrm{qF}} \sim 200 \mathrm{MeV}$) \rightarrow large binding energy
\rightarrow wide momentum transfer

$(1)^{2}=0(12)$
 $\bar{K} N N N$ in ${ }^{4} \mathrm{He}\left(K^{-}, \Lambda d\right) n$

Helium-4 data with the E15 setup as a test experiment in 2020

J-PARC E15 vs T77 @ K1.8BR

We already have small dataset with ${ }^{4} \mathrm{He}$ target

J-PARC E15@2015
42 G K- on ${ }^{3} \mathrm{He}$

J-PARC T77@2020

6G K- on ${ }^{4} \mathrm{He}$ only 3 days!

- The same cylindrical detector system
${ }^{4} \mathrm{He}\left(K^{-}, \pi^{0}\right){ }_{\Lambda}^{4} \mathrm{H}$ + forward calorimeter in T77 for lifetime measurements of hypernuclei

$\wedge d n$ event selection

deuteron ID
CDC track curvature \&
CDH time of flight

Λ reconstruction
w/ vertex consistency cut
w/ pipd missing mass cut

Missing neutron ID
w/ vertex consistency cut
w/ lambda mass cut

- $\wedge d n$ final states are identified with a good purity by considering kinematical \& topological consistensies
- $\sim 20 \%$ contamination from $\Sigma^{0} \mathrm{dn} / \Sigma-\mathrm{dp}$
$\bar{K} N N N$: Preliminary result

- Two disributions are quite similar
- structure below the threshold, QF-K-, and broad background

$\bar{K} N N N:$ Preliminary result

2D fit on the (M,q) space with simlar shapes to E15:
" $\bar{K} N N N^{\prime \prime}$ Breit-Wigner wtih Gaus. form factor, Broad BG and QF-K-

Preliminary result

T77 preliminary

- The binding energy is compatible with theoretical predictions
. " $\bar{K} N N N$ " system might have larger binding than " $\bar{K} N N$ ", although we expect a large systematic error 10~20 MeV.
- Expereimental width is larger than theoretical predictions.

Comparison with Sekihara calc.

- Good agreement in the mass spectrum.
(although it failed to explain experimental q spectrum)
- Detailed comparison with theoretical spectrum is important

What's next?

Now we know how to produce "kaonic nuclei"!

- Determine spin-parity of the observed $\bar{K} N N$ state (J-PARC P89)
. Spin-spin correlation between Λp : need polarimeters
- Comparison with the isospin partner (Λn)

$$
\text { or } \Sigma^{*} N\left[I\left(J^{p}\right)=1 / 2\left(2^{+}\right)\right]
$$

- Confirm $\bar{K} N N N\left[I\left(J^{p}\right)=0\left(1 / 2^{-}\right)\right]$and study its property (J-PARC E80)
- $\Lambda p n$ in addition to the Λd decay mode
. $\Sigma^{*-} p p\left[I\left(J^{p}\right)=0\left(3 / 2^{+}\right)\right]$possibility should be considered
- Heaviear kaonic nuclei, doulbe kaonic nuclei, ...

J－PARC E80 with a new spectrometer new CDS

E15 CDS

－About 10 times volume
－We got a large budget，特別推進（P．I．：M．Iwasaki，JFY2022—JFY2026）

New spectrometer

- x3 longer CDC: solid angle 59\% $\boldsymbol{\rightarrow}$ 93\%
- 3-layer barrel NC (CNC): neutron efficiency $3 \% \rightarrow 15 \%$
- polalimeter trackers between CNCs in future
- VFT to improve z-vertex \& momentum resolution

Acceptance

- large kinematical-region coverage \& better acceptance

Expected yields

$$
\begin{aligned}
N & =\sigma \times N_{\text {beam }} \times N_{\text {target }} \times \epsilon, \\
\epsilon & =\epsilon_{D A Q} \times \epsilon_{\text {trigger }} \times \epsilon_{\text {beam }} \times \epsilon_{\text {fiducial }} \times \Omega_{C D S} \times \epsilon_{C D S},
\end{aligned}
$$

- $\mathrm{N}_{\text {beam }}=100$ G K- on target
- MR beam power of 90 kW
- 3 weeks data taking (90% up-time)

$$
\begin{gathered}
\sigma\left(K^{-} p p n\right) \cdot \operatorname{Br}(\Lambda d) \sim 5 \mu b \\
\sigma\left(K^{-} p p n\right) \cdot \operatorname{Br}(\Lambda p n) \sim 5 \mu b \\
\hline
\end{gathered}
$$

from the T77 preliminary result and an assumption

- $N(K-p p n \rightarrow \Lambda d) \sim 1.2 \times 10^{4}$
- $\mathrm{N}(\mathrm{K}-\mathrm{ppn} \rightarrow \Lambda \mathrm{pn}) \sim 1.5 \times 10^{3}$
- c.f. 1.7×10^{3} "K-pp" $\rightarrow \Lambda$ p accumulated in E15-2nd (40 G K-)

	$\Lambda \mathbf{d} / \Lambda \mathrm{pn}$
σ (K-ppn)*Br	$5 \mu \mathrm{~b}$
N(K- on target)	100 G X ~2
N(target)	2.56×10^{23}
$\varepsilon(D A Q)$	0.92
ε (trigger)	0.98
ε (beam)	0.72
Ω (CDC)	0.23 / 0.059 x ~
$\varepsilon(C D C)$	0.6 / 0.3
N(K-ppn)	$12 \mathrm{k} / 1.5 \mathrm{k}$

$\checkmark \sim 40$ times more Λd events than existing data in T77
\checkmark Similar number of $\Lambda p n$ events to Λp in E15

Expected spectra

@ 3 weeks, 90kW
$\mathrm{K}+\mathrm{t}^{4} \mathrm{He} \rightarrow \Lambda \mathrm{d}+\mathrm{n}$
$\mathrm{B}_{\text {Kppn }} \sim 40 \mathrm{MeV}$
$\Gamma_{\text {Kppn }} \sim 100 \mathrm{MeV}$
$\mathrm{Q}_{\text {kppn }} \sim 400 \mathrm{MeV} / \mathrm{c}$
$\sigma(\mathrm{K}-\mathrm{ppn}) * \mathrm{Br} \sim 5 \mu \mathrm{~b}$
$\begin{array}{ll}\sigma(Q F) & \sim 5 \mu b \\ \sigma(B G) & \sim 10 \mu b\end{array}$

$\mathbf{K}-+^{4} \mathrm{He} \rightarrow \Lambda \mathrm{pn}+\mathbf{n}$

\checkmark Clear peak would be observed for both modes

Heavier systems

Knucl	reaction	decay
"K- $\boldsymbol{\alpha} "$	$6 \mathrm{Li}(\mathrm{K}-, \mathrm{d})$	$\Lambda \mathrm{t} / \wedge \mathrm{dn} /$ $\Lambda \mathrm{pnn} \cdots$
"K-6 Li"	$7 \mathrm{Li}(\mathrm{K}-, \mathrm{n})$	$\wedge \alpha \mathrm{n} \cdots \mathrm{etc} ?$
"K- $\boldsymbol{\alpha} \boldsymbol{\alpha} "$	$9 \mathrm{Be}(\mathrm{K}-, \mathrm{n})$	$?$

- Deuteron knock-out reaction has a larger momentum transfer
- \rightarrow We would like test in E80: ${ }^{6}$ Li(K-,d)"K- α ", 4He(K-,d)"K0barnn"
- Larger decay particle (like α) can not be detected by the CDS. many-particle decay modes are also difficult to reconstruct.
- Forward knocked-out particle spectroscopy at relatively large angle would be an altanative way

Schedule

- We plan to be ready by the end of JFY2025

Summary

- Anti-kaon could be a unique probe for hadron physics. We are performing systematic experiments at J-PARC K1.8BR.
- $\bar{K} N N$ signals were observed in $\mathbf{3} \mathbf{H e}(\mathbf{K}-, \Lambda \mathrm{p}) \mathrm{n}$ channel in J-PARC E15.
- Similar structure found in ${ }^{4} \mathrm{He}\left(\mathrm{K}^{-}, \Lambda \mathrm{d}\right) \mathrm{n}$ events as a by-product of J PARC T77 would include signals of $\bar{K} N N N$.
- More systematic study from JFY2026 with a new spectrometer
- $\bar{K} N N N$ confirmation (J-PARC E80)
- $\bar{K} N N$ spin-parity (J-PARC P89)

Kaonic nuclear state is getting more solid

J-PARC E80/P89 collaboration

I. Asano K. Itahashi, M. Iwasaki, Y. Ma, R. Murayama, H. Outa, F. Sakuma ${ }^{\text {E }}$, T. Yamaga

RIKEN Cluster for Pioneering Research, RIKEN, Saitama, 351-0198, Japan
K. Inoue, S. Kawasaki, H. Noumi, K. Shirotori

Research Center for Nuclear Physics (RCNP), Osaka University, Osaka, 567-0047, Jap
H. Ohnishi, Y. Sada, C. Yoshida

Research Center for Electron Photon Science (ELPH), Tohoku University, Sendai,
RCNP 982-0826, Japan
T. Hashimoto

Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195, Japan
M. Iio, S. Ishimoto, K. Ozawa, S. Suzuki

High Energy Accelerator Research Organization (KEK), Ibaraki, 305-0801, Japan KEK

Department of Physics, Osaka University, Osaka, 560-0043, Japan T. Nagae

Department of Physics, Kyoto University, Kyoto, 606-8502, Japan H. Fujioka Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
M. Bazzi, A. Clozza, C. Curceanu, C. Guaraldo, M. Iliescu, M. Miliucci, A. Sco
D. Sirghi, F. Sirghi

INFN Laboratori Nazionali di Frascati dell' INFN, I-00044 Frascati, Italy
P. Buehler, E. Widmann, J. Zmeskal

Stefan-Meyer-Institut für subatomare Physik, A-1090 Vienna, Austria

- We welcome new collaborators !
- Now 1 postdoc position is open at JAEA (deadline: Dec. 23)

