K^+N elastic scattering for estimation of in-medium quark condensate with strange

Yutaro Iizawa, Daisuke Jido, Stephan Hübsch ELPH workshop C033

Department of Physics, Tokyo Institute of Technology

Partial restoration of ChSB in-medium

- Chiral symmetry (ChS) is spontaneously broken by physical states (ChSB)
 - Quark condensate $\Rightarrow \left\langle \bar{\psi}\psi \right\rangle \neq 0$
- ChS is considered to be **partially restored** even at finite density like nuclei
 - $|\langle ar{\psi}\psi
 angle|$ is expected to decreases in nuclear medium
- $\rightarrow\,$ want to investigate the behavior of in-medium quark condensate from <code>observables</code>

In-medium quark condensate $\langle \bar{u}u + \bar{d}d \rangle^*$

• up to linear-density:

$$\frac{\langle \bar{u}u + \bar{d}d \rangle^*}{\langle \bar{u}u + \bar{d}d \rangle_0} = 1 - \frac{\sigma_{\pi N}}{F_\pi^2 M_\pi^2} \rho$$

E.G. Drukarev, E.M. Levin, Nucl. Phys. A 511, 679 (1990)

- $c_1 = -\frac{\sigma_{\pi N}}{4M_{\pi}^2} = -0.59 \text{ GeV}^{-1}$ with $\sigma_{\pi N} = 45 \text{ MeV}$ determined by πN scattering J. Gasser, H. Leutwyler, and M. E. Sainio, Phys. Lett. B253, 252 (1991)
- 30 % reduction at ρ₀ (normal nuclear density 0.17 fm⁻³)
- Chiral symmetry is 30% restored at normal nuclear density
- Theoretical prediction can be seen in π -nucleus system experimentally

pionic atom:

-K. Suzuki et al., PRL 92, 072302 (2004);

-E. E. Kolomeitsev et al., PRL 90, 092501 (2003);

-Jido, Hatsuda, Kunihiro, PLB 670, 109 (2008)

Yutaro Iizawa, Daisuke Jido, Stephan Hübsch

 πA scattering:

-E. Friedman et al., PRL 93, 122302 (2004); PRC 72, 034609 (2005)

taken from N. Kaiser et al., PRC 77, 025204 (2008)

In-medium condensate with strange quarks

Systematic point of view, we are interested in in-medium quark condensate with strange $\langle \bar{u}u + \bar{s}s \rangle^*$:

- **1** represent $\langle \bar{u}u + \bar{s}s \rangle^*$ in terms of correlation function Π^{ab}
- **2** expand Π^{ab} based on low-density theorem then obtain $\langle \bar{u}u + \bar{s}s \rangle^*$ in terms of T_{KN} in soft-limit $q \to 0$
- 3 calculate T_{KN} with ChPT and the LECs are determined from the experiments
- 4 evaluate $\langle \bar{u}u + \bar{s}s \rangle^*$ using the obtained T_{KN}

Correlation function approach (Jido, Hatsuda, Kunihiro, PLB 670 (2008), 109, Goda, Jido, PRC 88 (2013), 0652049, Hübsch, Jido, PRC 104 (2021), 015202.)

Using chiral Ward identity, $\langle \bar{\psi}\psi \rangle^*$ is represented in terms of two correlation functions in soft-limit $q \to 0$

$$i\delta^{ab} \langle \bar{u}u + \bar{s}s \rangle^* = \frac{m + m_s}{2} \Pi^{ab}(0) + i \lim_{q \to 0} q^{\mu} \Pi^{ab}_{5\mu}(q) \text{ with } a, b = 4, 5,$$
$$\Pi^{ab}(q) = \text{F.T.} \langle \Omega | \operatorname{T}[P^a(x)P^b(0)] | \Omega \rangle$$
$$\Pi^{ab}_{5\mu}(q) = \text{F.T.} \langle \Omega | \operatorname{T}[A^a_{\mu}(x)P^b(0)] | \Omega \rangle$$

 $P^a(x) = \bar{q}i\gamma_5\lambda^a q$: pseudoscalar field: $A^a_\mu(x) = \bar{q}\gamma_\mu\gamma_5\frac{\lambda^a}{2}q$: axial-vector current $|\Omega\rangle$: nuclear-matter ground state

Correlation function approach for in-medium condensate

Correlation function approach (Jido, Hatsuda, Kunihiro, PLB 670 (2008), 109, Goda, Jido, PRC 88 (2013), 0652049, Hübsch, Jido, PRC 104 (2021), 015202.)

Using chiral Ward identity, $\langle \bar\psi\psi\rangle^*$ is represented in terms of two correlation functions in soft-limit q o 0

$$\begin{split} i\delta^{ab} \langle \bar{u}u + \bar{s}s \rangle^* &= \frac{m + m_s}{2} \Pi^{ab}(0) + i \lim_{\mathcal{A} \to 0} q^{\mu} \Pi^{ab}_{5\mu}(q) \text{ with } a, b = 4, 5, \\ \Pi^{ab}(q) &= \text{F.T.} \langle \Omega | \operatorname{T}[P^a(x)P^b(0)] | \Omega \rangle \\ \Pi^{ab}_{5\mu}(q) &= \text{F.T.} \langle \Omega | \operatorname{T}[A^a_{\mu}(x)P^b(0)] | \Omega \rangle \end{split}$$

 $P^a(x) = \bar{q}i\gamma_5\lambda^a q$: pseudoscalar field: $A^a_\mu(x) = \bar{q}\gamma_\mu\gamma_5\frac{\lambda^a}{2}q$: axial-vector current $|\Omega\rangle$: nuclear-matter ground state

 $\langle \bar{\psi}\psi \rangle^*$ is obtained by evaluating Π^{ab} with soft-limit $q \to 0$ $(q^{\mu}\Pi^{ab}_{5\mu}(q)$ vanishes in soft-limit because of no zero modes.) Yutaro Jizawa, Daisuke Jido, Stephan Hübsch

Correlation function approach for in-medium condensate

Correlation function approach (Jido, Hatsuda, Kunihiro, PLB 670 (2008), 109, Goda, Jido, PRC 88 (2013), 0652049, Hübsch, Jido, PRC 104 (2021), 015202.)

Using chiral Ward identity, $\langle \bar{\psi}\psi \rangle^*$ is represented in terms of two correlation functions in soft-limit $q \to 0$

$$\begin{split} i\delta^{ab} \langle \bar{u}u + \bar{s}s \rangle^* &= \frac{m + m_s}{2} \Pi^{ab}(0) + i \lim_{\mathcal{A} \to 0} q^{\mu} \Pi_{5\mu}^{ab}(q) \text{ with } a, b = 4, 5, \\ \Pi^{ab}(q) &= \text{F.T. } \langle \Omega | \operatorname{T}[P^a(x)P^b(0)] | \Omega \rangle \\ \Pi_{5\mu}^{ab}(q) &= \text{F.T. } \langle \Omega | \operatorname{T}[A^a_{\mu}(x)P^b(0)] | \Omega \rangle \\ \langle \bar{u}u + \bar{s}s \rangle^* &= -i \frac{m + m_s}{2} \Pi^{4+i5,4-i5}(q = 0; \rho) \\ &= -i \frac{m + m_s}{2} \left\langle \left(\frac{P^4(0) + iP^5(0)}{\sqrt{2}} \right) \left(\frac{P^4(0) - iP^5(0)}{\sqrt{2}} \right) \right\rangle^* \\ &\sim -i \frac{m + m_s}{2} \left\langle \Omega | K^-(q)K^+(q) | \Omega \right\rangle \end{split}$$

Low-density expansion of $\Pi^{4+i5,4-i5}$

Low-density theorem (E.G. Drukarev, E.M. Levin, Nucl. Phys. A 511, 679 (1990))

$$\langle \Omega | \mathcal{O} | \Omega \rangle = \langle 0 | \mathcal{O} | 0 \rangle + \rho \langle N | \mathcal{O} | N \rangle + O(\rho^{n > 1})$$

Applying to Π^{ab} :

$$\Pi^{4+i5,4-i5}(q;\rho) = G_K \langle 0| K^-(q) K^+(q) | 0 \rangle + \rho G_K \langle N| K^-(q) K^+(q) | N \rangle + O(\rho^{n>1})$$
$$G_K \equiv \langle 0| \frac{P^4 - iP^5}{\sqrt{2}} | K^+ \rangle$$

and using the reduction formula (s. Weinberg, Phys. Rev. Lett. 17, 616 (1966)).

$$\langle N | K^{-}(q) K^{+}(q) | N \rangle = \frac{i}{q^{2} - M_{K}^{2}} \frac{1}{q^{2} - M_{K}^{2}} \left(-\frac{T_{KN}(q)}{2M_{N}} \right),$$

we obtain

$$\frac{\langle \bar{u}u + \bar{s}s \rangle^*}{\langle \bar{u}u + \bar{s}s \rangle_0} = \left(1 + \frac{\rho}{M_K^2} \frac{T_{KN}(q=0)}{2M_N}\right)$$

Yutaro Iizawa, Daisuke Jido, Stephan Hübsch

ELPH workshop C033 6 / 20

In order to evaluate $\langle \bar{u}u + \bar{s}s \rangle^*$, T_{KN} is needed:

$$\frac{\langle \bar{u}u + \bar{s}s \rangle^*}{\langle \bar{u}u + \bar{s}s \rangle_0} = \left(1 + \frac{\rho}{M_K^2} \frac{T_{KN}(q=0)}{2M_N}\right).$$

1 construct K^+N scattering amplitude by ChPT:

- ChPT is suitable for taking soft-limit
- T_{KN} includes the low-energy constants
- In order to improve **extrapolation to strange quark sector**, add some NNLO in addition to Leading Order + NLO, 12 LECs

Construction of T_{KN} : LO

Isospin combinations:

$$T_{K^+p\to K^+p} = T_{KN}^{I=1}$$

$$T_{K^+n\to K^+n} = \frac{1}{2}(T_{KN}^{I=1} + T_{KN}^{I=0})$$

$$T_{K^+n\to K^0p} = \frac{1}{2}(T_{KN}^{I=1} - T_{KN}^{I=0})$$

calculate $T_{KN}^{I=0,1}$

• Leading order of SU(3) chiral Lagrangian:

$$\mathcal{L}_{MB}^{(1)} = \text{Tr}\{\bar{B}(i\not\!\!D - M_0)B)\} - \frac{D}{2} \text{Tr}\{\bar{B}\gamma^{\mu}\gamma^5\{u_{\mu}, B\}\} - \frac{F}{2} \text{Tr}\{\bar{B}\gamma^{\mu}\gamma^5[u_{\mu}, B]\}$$
$$D = 0.80, \ F = 0.46$$

Construction of T_{KN} : NLO

• NLO of SU(3) chiral Lagrangian: Aoki, Jido, PTEP2019,013D01(19) $\mathcal{L}_{MB}^{(2)} = b_D \operatorname{Tr}\{\bar{B}\{\chi_+, B\}\} + b_F \operatorname{Tr}\{\bar{B}[\chi_+, B]\} + b_0 \operatorname{Tr}\{\bar{B}B\} \operatorname{Tr}\{\chi_+\}$ $+ d_1 \operatorname{Tr} \left(\bar{B} \{ u_{\mu}, [u^{\mu}, B] \} \right) + d_2 \operatorname{Tr} \left(\bar{B} [u_{\mu}, [u^{\mu}, B]] \right) + d_3 \operatorname{Tr} \left(\bar{B} u_{\mu} \right) \operatorname{Tr} (u^{\mu} B)$ $+ d_4 \operatorname{Tr} \left(\bar{B}B \right) \operatorname{Tr} \left(u^{\mu} u_{\mu} \right)$ $-\frac{g_1}{8M_{-1}^2} \operatorname{Tr}\left(\bar{B}\{u_{\mu}, [u_{\nu}, \{D^{\mu}, D^{\nu}\}B]\}\right) - \frac{g_2}{8M_{-1}^2} \operatorname{Tr}\left(\bar{B}[u_{\mu}, [u_{\nu}, \{D^{\mu}, D^{\nu}\}B]]\right)$ $-\frac{g_3}{8M_{\nu}^2} \operatorname{Tr}(\bar{B}u_{\mu}) \operatorname{Tr}(u_{\nu}, \{D^{\mu}, D^{\nu}\}B) - \frac{g_4}{8M_{\nu}^2} \operatorname{Tr}(\bar{B}\{D^{\mu}, D^{\nu}\}B) \operatorname{Tr}(u_{\mu}u_{\nu})$ $-\frac{h_1}{4} \operatorname{Tr}\left(\bar{B}[\gamma^{\mu},\gamma^{\nu}]Bu_{\mu}u_{\nu}\right) - \frac{h_2}{4} \operatorname{Tr}\left(\bar{B}[\gamma^{\mu},\gamma^{\nu}]u_{\mu}[u_{\nu},B]\right)$ $-\frac{h_3}{4}\operatorname{Tr}\left(\bar{B}[\gamma^{\mu},\gamma^{\nu}]u_{\mu}\{u_{\nu},B\}\right)-\frac{h_4}{4}\operatorname{Tr}(\bar{B}[\gamma^{\mu},\gamma^{\nu}]u_{\mu})\operatorname{Tr}(u_{\nu}B)+\mathrm{h.c.}$

$$\begin{split} b^{I=0} &= b_0 - b_F, \\ d^{I=0} &= 2d_1 + d_3 - 2d_4, \\ g^{I=0} &= 2g_1 + g_3 - 2g_4, \\ h^{I=0} &= h_1 + h_2 + h_3 + h_4, \end{split} \qquad b^{I=1} &= h_1 - h_2 - h_3 - h_4. \end{split}$$

Construction of T_{KN} : NNLO

• In order to improve **extrapolation to strange quark sector**, we introduce some terms which contain strange quark mass from the next-to-next-to-leading order (NNLO): oller et el. JHEP09 (2006) 079

$$\mathcal{L}_{MB}^{(3)} = v_D \operatorname{Tr}(\bar{B}\{\chi_-, \gamma_5 B\}) + v_F \operatorname{Tr}(\bar{B}[\chi_-, \gamma_5 B]) + w_1 \operatorname{Tr}(\bar{B}\gamma_\mu B[\chi_-, u^\mu]) + w_2 \operatorname{Tr}(\bar{B}[\chi_-, u^\mu]\gamma_\mu B) + w_3 [\operatorname{Tr}(\bar{B}u^\mu) \operatorname{Tr}(\chi_-\gamma_\mu B) - \operatorname{Tr}(\bar{B}\chi_-) \operatorname{Tr}(u^\mu \gamma_\mu B)]$$

$$v_{-} = v_{D} - v_{F},$$
 $v_{+} = v_{D} + 3v_{F},$
 $w^{I=0} = w_{1} - w_{2} + w_{3},$ $w^{I=1} = w_{1} + w_{2} - w_{3}$

Strange quark mass is contained in χ_-

KN scattering amplitudes:

$$T_{KN}^{I} = T_{WT}^{I} + T_{Born}^{I} + T_{NLO}^{I} + T_{NNLO}^{I}$$

Taking isospin-average and soft-limit, we have

$$\frac{\langle \bar{u}u + \bar{s}s \rangle^*}{\langle \bar{u}u + \bar{s}s \rangle_0} = 1 + \frac{(3b^{I=1} + b^{I=0})}{F_K^2}\rho$$

In order to evaluate $\langle \bar{u}u + \bar{s}s \rangle^*$, we need to obtain T_{KN} :

2 fit LECs to the experimental data:

- K^+p elastic diff. cross sections, $P_{\text{lab}} = 145 \text{ to } 726 \text{ MeV}/c$
- $K^+n \rightarrow K^0 p$ diff. cross sections, $P_{\text{lab}} = 434 \text{ to } 780 \text{ MeV}/c$
- I = 1, 0 total cross sections

Two choices for I = 0 total cross section data:

- Carroll et al. 1973
- Bowen et al. 1970, 1973 ← Broad resonance could exist Aoki, Jido, PTEP2019,013D01(19)

Construction of T_{KN} : I = 0 broad resonance state

• Broad resonance with I = 0, S = +1 around $P_{\text{lab}} = 600 \text{ MeV}$ has been reported in Aoki, Jido, PTEP2019,013D01(19)

	Resonance (J^P)	mass [MeV]	width [MeV]
Solution 1	$P_{01}\left(\frac{1}{2}^{+}\right)$	1617	305
Solution 2	$P_{03}\left(\frac{3}{2}^{+}\right)$	1678	463

- The resonance may affect $I = 0 K^+ N$ scattering
- $\rightarrow\,$ fit LECs with
 - **FIT 1**: Carroll et al. (1973) for I = 0, no resonance
 - **FIT 2**: Bowen et al. (1970) for I = 0, no resonance
 - **FIT 3**: Bowen et al. (1970) for I = 0 and P_{01} resonance
 - **FIT 4**: Bowen et al. (1970) for I = 0 and P_{03} resonance

Fitted LECs

Fitting	FIT 1 (Carroll 1973)	FIT 2 (Bowen 1970)	FIT 3 (Bowen 1970 with P_{01})	FIT 4 (Bowen 1970 with P_{03})
$b^{I=1}$	-1.07 ± 0.11	-1.13 ± 0.10	-0.11 ± 0.12	-1.08 ± 0.11
$d^{I=1}$	-2.05 ± 0.20	-2.08 ± 0.17	0.19 ± 0.19	-1.97 ± 0.17
$g^{I=1}$	-0.82 ± 0.22	-0.90 ± 0.18	-0.80 ± 0.20	-1.01 ± 0.19
$h^{I=1}$	3.70 ± 0.50	4.20 ± 0.60	0.90 ± 0.54	4.20 ± 0.60
$w^{I=1}$	-0.76 ± 0.11	-1.01 ± 0.10	-0.36 ± 0.10	-1.05 ± 0.10
$b^{I=0}$	-3.66 ± 0.30	1.40 ± 0.40	2.40 ± 0.48	2.30 ± 0.40
$d^{I=0}$	-9.20 ± 0.40	-0.30 ± 0.40	-1.40 ± 0.58	-0.60 ± 0.50
$g^{I=0}$	1.50 ± 0.50	6.10 ± 0.70	8.30 ± 0.95	8.10 ± 0.80
$h^{I=0}$	16.30 ± 0.70	-3.90 ± 0.80	-1.60 ± 0.96	-4.90 ± 0.80
$w^{I=0}$	-0.57 ± 0.29	4.19 ± 0.35	4.90 ± 0.46	5.00 ± 0.40
v_{-}	42.90 ± 1.70	12.70 ± 1.70	5.00 ± 0.19	10.1 ± 1.70
v_+	-7.60 ± 0.90	4.60 ± 0.90	-0.36 ± 0.93	4.70 ± 0.90
χ^2_{dof}	2.41	2.75	2.95	2.96

LECs except for w^I : $\,{
m GeV}^{-1}$, w^I : $\,{
m GeV}^{-2}$

I = 1 LECs are better determined than I = 0 LECs.

Total cross section

 $\sqrt{I} = 1$ total cross section is reproduced very well $\sqrt{I} = 0$ total cross section is also reproduced well

K^+p differential cross sections

 $\sqrt{K^+ p}$ differential cross sections are reproduced very well

$K^+n \rightarrow K^0p$ charge exchange

 $\sqrt{K^+n} \rightarrow K^0 p$ differential cross sections are reproduced well

• The obtained LECs \rightarrow in-medium $\langle \bar{u}u + \bar{s}s \rangle$

Behavior of in-medium $\langle \bar{u}u + \bar{s}s \rangle$

$$\frac{\langle \bar{u}u + \bar{s}s \rangle^*}{\langle \bar{u}u + \bar{s}s \rangle_0} = 1 + \frac{(3b^{I=1} + b^{I=0})}{F_K^2}\rho$$

- Gray area: taken from
 L.S. Geng, Frontiers of Physics 8, 328 (2013),
 B. Kubis and U. G. Meißner, Eur. Phys. J. C18, 747
 (2001)
- FIT 1: Carroll et al. (1973) for I = 0
- FIT 2: Bowen et al. (1970) for I = 0
- FIT 3: Bowen with the P_{01} resonance
- FIT 4: Bowen with the P_{03} resonance
- Whether $\langle \bar{u}u + \bar{s}s \rangle^*$ increases or decreases, and to what degree depends on the existence of resonances and the choice of experimental data for I = 0

Summary

- We derive $\langle \bar{u}u + \bar{s}s \rangle^*$ using Correlation function approach and Low-density theorem
- We estimate LECs from K^+N elastic scattering to evaluate $\langle \bar{u}u + \bar{s}s \rangle^*$
 - improve extrapolation to strange sector
 - consider effect of broad resonance state with S=+1, I=0 around $P_{\rm lab}=600~{\rm MeV}$
 - obtain the LECs good to reproduce the data
- Whether $\langle \bar{u}u + \bar{s}s \rangle^*$ increases or decreases and to what degree depends on the existence of resonances and the choice of data for I = 0
 - $I = 1 K^+ N$ scattering data: $P_{\text{lab}} = 145 786 \text{ MeV}$
 - $I = 0 \ K^+ N$ scattering data: $P_{\text{lab}} = 366 794 \text{ MeV}$
 - \rightarrow Need lower energy data with low ambiguity of $I = 0 K^+ N$ scattering in order to avoid the effect of the resonance and the choice of I = 0 total cross section

K^+n differential cross sections

K^+n elastic scattering are not reproduced not used in fitting

