$K^{+} N$ elastic scattering for estimation of in-medium quark condensate with strange

Yutaro lizawa, Daisuke Jido, Stephan Hübsch
ELPH workshop C033
Department of Physics, Tokyo Institute of Technology

Partial restoration of ChSB in-medium

- Chiral symmetry (ChS) is spontaneously broken by physical states (ChSB)
- Quark condensate $\Rightarrow\langle\bar{\psi} \psi\rangle \neq 0$
- ChS is considered to be partially restored even at finite density like nuclei
- $|\langle\bar{\psi} \psi\rangle|$ is expected to decreases in nuclear medium
\rightarrow want to investigate the behavior of in-medium quark condensate from observables

In-medium quark condensate $\langle\bar{u} u+\bar{d} d\rangle^{*}$

- up to linear-density:

taken from N. Kaiser et al., PRC 77, 025204 (2008)

$$
\frac{\langle\bar{u} u+\bar{d} d\rangle^{*}}{\langle\bar{u} u+\bar{d} d\rangle_{0}}=1-\frac{\sigma_{\pi N}}{F_{\pi}^{2} M_{\pi}^{2}} \rho
$$

E.G. Drukarev, E.M. Levin, Nucl. Phys. A 511, 679 (1990)

- $c_{1}=-\frac{\sigma_{\pi N}}{4 M_{\pi}^{2}}=-0.59 \mathrm{GeV}^{-1}$ with
$\sigma_{\pi N}=45 \mathrm{MeV}$
determined by πN scattering
J. Gasser, H. Leutwyler, and M. E. Sainio, Phys. Lett. B253, 252 (1991)
- 30% reduction at ρ_{0} (normal nuclear density $0.17 \mathrm{fm}^{-3}$)
- Chiral symmetry is 30% restored at normal nuclear density
- Theoretical prediction can be seen in π-nucleus system experimentally pionic atom:
-K. Suzuki et al., PRL 92, 072302 (2004);
πA scattering:
-E. E. Kolomeitsev et al., PRL 90, 092501 (2003);
-E. Friedman et al., PRL 93, 122302 (2004); PRC 72, 034609 (2005)
-Jido, Hatsuda, Kunihiro, PLB 670, 109 (2008)

In-medium condensate with strange quarks

Systematic point of view, we are interested in in-medium quark condensate with strange $\langle\bar{u} u+\bar{s} s\rangle^{*}$:
(1) represent $\langle\bar{u} u+\bar{s} s\rangle^{*}$ in terms of correlation function $\Pi^{a b}$
(2) expand $\Pi^{a b}$ based on low-density theorem then obtain $\langle\bar{u} u+\bar{s} s\rangle^{*}$ in terms of $T_{K N}$ in soft-limit $q \rightarrow 0$
(3) calculate $T_{K N}$ with ChPT and the LECS are determined from the experiments
(4) evaluate $\langle\bar{u} u+\bar{s} s\rangle^{*}$ using the obtained $T_{K N}$

Correlation function approach for in-medium condensate

Correlation function approach (Jido, Hatsuda, Kunihiro, PLB 670 (2008), 109, Goda, Jido, PRC 88 (2013), 0652049, Hübsch, Jido, PRC 104 (2021), 015202.) Using chiral Ward identity, $\langle\bar{\psi} \psi\rangle^{*}$ is represented in terms of two correlation functions in soft-limit $q \rightarrow 0$

$$
\begin{aligned}
i \delta^{a b}\langle\bar{u} u+\bar{s} s\rangle^{*} & =\frac{m+m_{s}}{2} \Pi^{a b}(0)+i \lim _{q \rightarrow 0} q^{\mu} \Pi_{5 \mu}^{a b}(q) \text { with } a, b=4,5, \\
\Pi^{a b}(q) & =\text { F.T. }\langle\Omega| \mathrm{T}\left[P^{a}(x) P^{b}(0)\right]|\Omega\rangle \\
\Pi_{5 \mu}^{a b}(q) & =\text { F.T. }\langle\Omega| \mathrm{T}\left[A_{\mu}^{a}(x) P^{b}(0)\right]|\Omega\rangle
\end{aligned}
$$

$P^{a}(x)=\bar{q} i \gamma_{5} \lambda^{a} q$: pseudoscalar field:
$A_{\mu}^{a}(x)=\bar{q} \gamma_{\mu} \gamma_{5} \frac{\lambda^{a}}{2} q$: axial-vector current
$|\Omega\rangle$: nuclear-matter ground state

Correlation function approach for in-medium condensate

Correlation function approach (Jido, Hatsuda, Kunihiro, PLB 670 (2008), 109, Goda, Jido, PRC 88 (2013), 0652049, Hübsch, Jido, PRC 104 (2021), 015202.)

Using chiral Ward identity, $\langle\bar{\psi} \psi\rangle^{*}$ is represented in terms of two correlation functions in soft-limit $q \rightarrow 0$

$$
\begin{aligned}
i \delta^{a b}\langle\bar{u} u+\bar{s} s\rangle^{*} & =\frac{m+m_{s}}{2} \Pi^{a b}(0)+i \lim _{q \rightarrow 0} q^{\mu} \Pi_{5 \mu}^{a b}(q) \\
\Pi^{a b}(q) & =\text { F.T. }\langle\Omega| \mathrm{T}\left[P^{a}(x) P^{b}(0)\right]|\Omega\rangle \\
\Pi_{5 \mu}^{a b}(q) & =\text { F.T. }\langle\Omega| \mathrm{T}\left[A_{\mu}^{a}(x) P^{b}(0)\right]|\Omega\rangle
\end{aligned}
$$

$P^{a}(x)=\bar{q} i \gamma_{5} \lambda^{a} q$: pseudoscalar field:
$A_{\mu}^{a}(x)=\bar{q} \gamma_{\mu} \gamma_{5} \frac{\lambda^{a}}{2} q$: axial-vector current
$|\Omega\rangle$: nuclear-matter ground state
$\langle\bar{\psi} \psi\rangle^{*}$ is obtained by evaluating $\Pi^{a b}$ with soft-limit $q \rightarrow 0$
($q^{\mu} \Pi_{5 \mu}^{a b}(q)$ vanishes in soft-limit because of no zero modes.)

Correlation function approach for in-medium condensate

Correlation function approach (Jido, Hatsuda, Kunihiro, PLB 670 (2008), 109, Goda, Jido, PRC 88 (2013), 0652049, Hübsch, Jido, PRC 104 (2021), 015202.)

Using chiral Ward identity, $\langle\bar{\psi} \psi\rangle^{*}$ is represented in terms of two correlation functions in soft-limit $q \rightarrow 0$

$$
\begin{aligned}
i \delta^{a b}\langle\bar{u} u+\bar{s} s\rangle^{*} & =\frac{m+m_{s}}{2} \Pi^{a b}(0)+i \lim _{q \rightarrow 0} q^{\mu} \Pi_{5 \mu}^{a b}(q) \text { with } a, b=4,5, \\
\Pi^{a b}(q) & =\mathrm{F} . \mathrm{T} \cdot\langle\Omega| \mathrm{T}\left[P^{a}(x) P^{b}(0)\right]|\Omega\rangle \\
\Pi_{5 \mu}^{a b}(q) & =\mathrm{F} . \mathrm{T} \cdot\langle\Omega| \mathrm{T}\left[A_{\mu}^{a}(x) P^{b}(0)\right]|\Omega\rangle \\
\langle\bar{u} u+\bar{s} s\rangle^{*} & =-i \frac{m+m_{s}}{2} \Pi^{4+i 5,4-i 5}(q=0 ; \rho)
\end{aligned}
$$

$$
=-i \frac{m+m_{s}}{2}\left\langle\left(\frac{P^{4}(0)+i P^{5}(0)}{\sqrt{2}}\right)\left(\frac{P^{4}(0)-i P^{5}(0)}{\sqrt{2}}\right)\right\rangle^{*}
$$

$$
\sim-i \frac{m+m_{s}}{2}\langle\Omega| K^{-}(q) K^{+}(q)|\Omega\rangle
$$

Low-density expansion of $\Pi^{4+i 5,4-i 5}$

Low-density theorem (E.G. Drukarev, E.M. Levin, Nucl. Phys. A 511, 679 (1990))

$$
\langle\Omega| \mathcal{O}|\Omega\rangle=\langle 0| \mathcal{O}|0\rangle+\rho\langle N| \mathcal{O}|N\rangle+O\left(\rho^{n>1}\right)
$$

Applying to $\Pi^{a b}$:

$$
\begin{aligned}
\Pi^{4+i 5,4-i 5}(q ; \rho) & =G_{K}\langle 0| K^{-}(q) K^{+}(q)|0\rangle+\rho G_{K}\langle N| K^{-}(q) K^{+}(q)|N\rangle+O\left(\rho^{n>1}\right) \\
G_{K} & \equiv\langle 0| \frac{P^{4}-i P^{5}}{\sqrt{2}}\left|K^{+}\right\rangle
\end{aligned}
$$

and using the reduction formula (s. Weinbers, Phys. Rev. Lett. 17, 616 (1966)):

$$
\langle N| K^{-}(q) K^{+}(q)|N\rangle=\frac{i}{q^{2}-M_{K}^{2}} \frac{1}{q^{2}-M_{K}^{2}}\left(-\frac{T_{K N}(q)}{2 M_{N}}\right),
$$

we obtain

$$
\frac{\langle\bar{u} u+\bar{s} s\rangle^{*}}{\langle\bar{u} u+\bar{s} s\rangle_{0}}=\left(1+\frac{\rho}{M_{K}^{2}} \frac{T_{K N}(q=0)}{2 M_{N}}\right) .
$$

Construction of $T_{K N}$

In order to evaluate $\langle\bar{u} u+\bar{s} s\rangle^{*}, T_{K N}$ is needed:

$$
\frac{\langle\bar{u} u+\bar{s} s\rangle^{*}}{\langle\bar{u} u+\bar{s} s\rangle_{0}}=\left(1+\frac{\rho}{M_{K}^{2}} \frac{T_{K N}(q=0)}{2 M_{N}}\right) .
$$

(1) construct $K^{+} N$ scattering amplitude by ChPT:

- ChPT is suitable for taking soft-limit
- $T_{K N}$ includes the low-energy constants
- In order to improve extrapolation to strange quark sector, add some NNLO in addition to Leading Order + NLO, 12 LECS

Construction of $T_{K N}$: LO

Isospin combinations:

$$
\begin{aligned}
T_{K^{+} p \rightarrow K^{+} p} & =T_{K N}^{I=1} \\
T_{K^{+} n \rightarrow K^{+} n} & =\frac{1}{2}\left(T_{K N}^{I=1}+T_{K N}^{I=0}\right) \\
T_{K^{+} n \rightarrow K^{0} p} & =\frac{1}{2}\left(T_{K N}^{I=1}-T_{K N}^{I=0}\right)
\end{aligned}
$$

calculate $T_{K N}^{I=0,1}$

- Leading order of SU(3) chiral Lagrangian:

$$
\begin{aligned}
\mathcal{L}_{M B}^{(1)} & \left.=\operatorname{Tr}\left\{\bar{B}\left(i \not D-M_{0}\right) B\right)\right\}-\frac{D}{2} \operatorname{Tr}\left\{\bar{B} \gamma^{\mu} \gamma^{5}\left\{u_{\mu}, B\right\}\right\}-\frac{F}{2} \operatorname{Tr}\left\{\bar{B} \gamma^{\mu} \gamma^{5}\left[u_{\mu}, B\right]\right\} \\
D & =0.80, F=0.46
\end{aligned}
$$

Construction of $T_{K N}$: NLO

- NLO of SU(3) chiral Lagrangian: Aoki, Jido, PTEP2019,013D01(19)

$$
\begin{aligned}
& \mathcal{L}_{M B}^{(2)}=b_{D} \operatorname{Tr}\left\{\bar{B}\left\{\chi_{+}, B\right\}\right\}+b_{F} \operatorname{Tr}\left\{\bar{B}\left[\chi_{+}, B\right]\right\}+b_{0} \operatorname{Tr}\{\bar{B} B\} \operatorname{Tr}\left\{\chi_{+}\right\} \\
&+d_{1} \operatorname{Tr}\left(\bar{B}\left\{u_{\mu},\left[u^{\mu}, B\right]\right\}\right)+d_{2} \operatorname{Tr}\left(\bar{B}\left[u_{\mu},\left[u^{\mu}, B\right]\right]\right)+d_{3} \operatorname{Tr}\left(\bar{B} u_{\mu}\right) \operatorname{Tr}\left(u^{\mu} B\right) \\
&+d_{4} \operatorname{Tr}(\bar{B} B) \operatorname{Tr}\left(u^{\mu} u_{\mu}\right) \\
&-\frac{g_{1}}{8 M_{N}^{2}} \operatorname{Tr}\left(\bar{B}\left\{u_{\mu},\left[u_{\nu},\left\{D^{\mu}, D^{\nu}\right\} B\right]\right\}\right)-\frac{g_{2}}{8 M_{N}^{2}} \operatorname{Tr}\left(\bar{B}\left[u_{\mu},\left[u_{\nu},\left\{D^{\mu}, D^{\nu}\right\} B\right]\right]\right) \\
&-\frac{g_{3}}{8 M_{N}^{2}} \operatorname{Tr}\left(\bar{B} u_{\mu}\right) \operatorname{Tr}\left(u_{\nu},\left\{D^{\mu}, D^{\nu}\right\} B\right)-\frac{g_{4}}{8 M_{N}^{2}} \operatorname{Tr}\left(\bar{B}\left\{D^{\mu}, D^{\nu}\right\} B\right) \operatorname{Tr}\left(u_{\mu} u_{\nu}\right) \\
&-\frac{h_{1}}{4} \operatorname{Tr}\left(\bar{B}\left[\gamma^{\mu}, \gamma^{\nu}\right] B u_{\mu} u_{\nu}\right)-\frac{h_{2}}{4} \operatorname{Tr}\left(\bar{B}\left[\gamma^{\mu}, \gamma^{\nu}\right] u_{\mu}\left[u_{\nu}, B\right]\right) \\
&-\frac{h_{3}}{4} \operatorname{Tr}\left(\bar{B}\left[\gamma^{\mu}, \gamma^{\nu}\right] u_{\mu}\left\{u_{\nu}, B\right\}\right)-\frac{h_{4}}{4} \operatorname{Tr}\left(\bar{B}\left[\gamma^{\mu}, \gamma^{\nu}\right] u_{\mu}\right) \operatorname{Tr}\left(u_{\nu} B\right)+\text { h.c. } \\
& \\
& b^{I=0}=b_{0}-b_{F}, \\
& d^{I=0}=2 d_{1}+d_{3}-2 d_{4}, \\
& g^{I=0}=2 g_{1}+g_{3}-2 g_{4}, \\
& h^{I=0}=h_{1}+h_{2}+h_{3}+h_{4}, d^{I=1}=-2 d_{2}-d_{3}-2 d_{4}, \\
& g^{I=1}=-2 g_{2}-g_{3}-2 g_{4}, \\
& h^{I=1}=h_{1}-h_{2}-h_{3}-h_{4} .
\end{aligned}
$$

Construction of $T_{K N}$: NNLO

- In order to improve extrapolation to strange quark sector, we introduce some terms which contain strange quark mass from the next-to-next-to-leading order (NNLO): oller et el. JHEP09 (2006) 079

$$
\begin{aligned}
& \mathcal{L}_{M B}^{(3)}=v_{D} \operatorname{Tr}\left(\bar{B}\left\{\chi_{-}, \gamma_{5} B\right\}\right)+v_{F} \operatorname{Tr}\left(\bar{B}\left[\chi_{-}, \gamma_{5} B\right]\right) \\
&+w_{1} \operatorname{Tr}\left(\bar{B} \gamma_{\mu} B\left[\chi_{-}, u^{\mu}\right]\right)+w_{2} \operatorname{Tr}\left(\bar{B}\left[\chi_{-}, u^{\mu}\right] \gamma_{\mu} B\right) \\
&+w_{3}\left[\operatorname{Tr}\left(\bar{B} u^{\mu}\right) \operatorname{Tr}\left(\chi_{-} \gamma_{\mu} B\right)-\operatorname{Tr}\left(\bar{B} \chi_{-}\right) \operatorname{Tr}\left(u^{\mu} \gamma_{\mu} B\right)\right] \\
& \\
& v_{-}=v_{D}-v_{F}, \quad v_{+}=v_{D}+3 v_{F}, \\
& w^{I=0}=w_{1}-w_{2}+w_{3}, \quad w^{I=1}=w_{1}+w_{2}-w_{3}
\end{aligned}
$$

Strange quark mass is contained in χ_{-}

Construction of $T_{K N}$: in-medium condensate

$K N$ scattering amplitudes:

$$
T_{K N}^{I}=T_{\mathrm{WT}}^{I}+T_{\mathrm{Born}}^{I}+T_{\mathrm{NLO}}^{I}+T_{\mathrm{NNLO}}^{I}
$$

Taking isospin-average and soft-limit, we have

$$
\frac{\langle\bar{u} u+\bar{s} s\rangle^{*}}{\langle\bar{u} u+\bar{s} s\rangle_{0}}=1+\frac{\left(3 b^{I=1}+b^{I=0}\right)}{F_{K}^{2}} \rho
$$

Construction of $T_{K N}$: Fitting

In order to evaluate $\langle\bar{u} u+\bar{s} s\rangle^{*}$, we need to obtain $T_{K N}$:
(2) fit LECS to the experimental data:

- $K^{+} p$ elastic diff. cross sections, $P_{\text {lab }}=145$ to $726 \mathrm{MeV} / c$
- $K^{+} n \rightarrow K^{0} p$ diff. cross sections, $P_{\text {lab }}=434$ to $780 \mathrm{MeV} / c$
- $I=1,0$ total cross sections

Two choices for $I=0$ total cross section data:

- Carroll et al. 1973
- Bowen et al. 1970, $1973 \leftarrow$ Broad resonance could exist Aoki, Jido, PTEP2019,013D01(19)

Construction of $T_{K N}: I=0$ broad resonance state

- Broad resonance with $I=0, S=+1$ around $P_{\text {lab }}=600 \mathrm{MeV}$ has been reported in Aoki, Jido, PTEP2019,013D01(19) Resonance $\left(J^{P}\right)$ mass [MeV] width [MeV]

Solution 1	$P_{01}\left(\frac{1}{2}^{+}\right)$	1617	305
Solution 2	$P_{03}\left(\frac{3}{2}^{+}\right)$	1678	463

- The resonance may affect $I=0 K^{+} N$ scattering
\rightarrow fit LECs with
FIT 1: Carroll et al. (1973) for $I=0$, no resonance
FIT 2: Bowen et al. (1970) for $I=0$, no resonance
FIT 3: Bowen et al. (1970) for $I=0$ and P_{01} resonance
FIT 4: Bowen et al. (1970) for $I=0$ and P_{03} resonance

Fitted LECs

Fitting	FIT 1 (Carroll 1973)	FIT 2 (Bowen 1970)	FIT 3 (Bowen 1970 with P_{01})	FIT 4 (Bowen 1970 with P_{03})
$b^{I=1}$	-1.07 ± 0.11	-1.13 ± 0.10	-0.11 ± 0.12	-1.08 ± 0.11
$d^{I=1}$	-2.05 ± 0.20	-2.08 ± 0.17	0.19 ± 0.19	-1.97 ± 0.17
$g^{I=1}$	-0.82 ± 0.22	-0.90 ± 0.18	-0.80 ± 0.20	-1.01 ± 0.19
$h^{I=1}$	3.70 ± 0.50	4.20 ± 0.60	0.90 ± 0.54	4.20 ± 0.60
$w^{I=1}$	-0.76 ± 0.11	-1.01 ± 0.10	-0.36 ± 0.10	-1.05 ± 0.10
$b^{I=0}$	-3.66 ± 0.30	1.40 ± 0.40	2.40 ± 0.48	2.30 ± 0.40
$d^{I=0}$	-9.20 ± 0.40	-0.30 ± 0.40	-1.40 ± 0.58	-0.60 ± 0.50
$g^{I=0}$	1.50 ± 0.50	6.10 ± 0.70	8.30 ± 0.95	8.10 ± 0.80
$h^{I=0}$	16.30 ± 0.70	-3.90 ± 0.80	-1.60 ± 0.96	-4.90 ± 0.80
$w^{I=0}$	-0.57 ± 0.29	4.19 ± 0.35	4.90 ± 0.46	5.00 ± 0.40
v_{-}	42.90 ± 1.70	12.70 ± 1.70	5.00 ± 0.19	10.1 ± 1.70
v_{+}	-7.60 ± 0.90	4.60 ± 0.90	-0.36 ± 0.93	4.70 ± 0.90
$\chi_{\text {dof }}^{2}$	2.41	2.75	2.95	2.96

LECs except for $w^{I}: \mathrm{GeV}^{-1}, w^{I}: \mathrm{GeV}^{-2}$
$I=1$ LECs are better determined than $I=0$ LECs.

Total cross section

$I=1$ total cross section

$I=0$ total cross section

$\sqrt{ } I=1$ total cross section is reproduced very well
$\sqrt{ } I=0$ total cross section is also reproduced well

$K^{+} p$ differential cross sections

$\sqrt{ } K^{+} p$ differential cross sections are reproduced very well

$K^{+} n \rightarrow K^{0} p$ charge exchange

$\sqrt{ } K^{+} n \rightarrow K^{0} p$ differential cross sections are reproduced well

- The obtained LECS \rightarrow in-medium $\langle\bar{u} u+\bar{s} s\rangle$

Behavior of in-medium $\langle\bar{u} u+\bar{s} s\rangle$

$$
\frac{\langle\bar{u} u+\bar{s} s\rangle^{*}}{\langle\bar{u} u+\bar{s} s\rangle_{0}}=1+\frac{\left(3 b^{I=1}+b^{I=0}\right)}{F_{K}^{2}} \rho
$$

- Gray area: taken from L.S. Geng, Frontiers of Physics 8, 328 (2013), B. Kubis and U. G. Meißner, Eur. Phys. J. C18, 747 (2001)
- FIT 1: Carroll et al. (1973) for $I=0$
- FIT 2: Bowen et al. (1970) for $I=0$
- FIT 3: Bowen with the P_{01} resonance
- FIT 4: Bowen with the P_{03} resonance
- Whether $\langle\bar{u} u+\bar{s} s\rangle^{*}$ increases or decreases, and to what degree depends on the existence of resonances and the choice of experimental data for $I=0$

Summary

- We derive $\langle\bar{u} u+\bar{s} s\rangle^{*}$ using Correlation function approach and Low-density theorem
- We estimate LECs from $K^{+} N$ elastic scattering to evaluate $\langle\bar{u} u+\bar{s} s\rangle^{*}$
- improve extrapolation to strange sector
- consider effect of broad resonance state with $S=+1, I=0$ around $P_{\text {lab }}=600 \mathrm{MeV}$
- obtain the LECs good to reproduce the data
- Whether $\langle\bar{u} u+\bar{s} s\rangle^{*}$ increases or decreases and to what degree depends on the existence of resonances and the choice of data for $I=0$
- $I=1 K^{+} N$ scattering data: $P_{\text {lab }}=145-786 \mathrm{MeV}$
- $I=0 K^{+} N$ scattering data: $P_{\text {lab }}=366-794 \mathrm{MeV}$
\rightarrow Need lower energy data with low ambiguity of $I=0 K^{+} N$ scattering in order to avoid the effect of the resonance and the choice of $I=0$ total cross section

$K^{+} n$ differential cross sections

$K^{+} n$ elastic scattering are not reproduced not used in fitting

