
Mittag-Leffler Expansion to Hadron Physics

ELPHWorkshop C033, December 7, 2022

Wren Yamada

University of Tokyo, KEK

W. Yamada, O. Morimatsu, Phys. Rev. C 102, 055201 (2020)

W. Yamada, O. Morimatsu, Phys. Rev. C 103, 045201 (2021)

W. Yamada, O. Morimatsu, T. Sato, K. Yazaki, Phys. Rev. D 105, 014034 (2022)

W. Yamada, O. Morimatsu, T. Sato, Phys. Rev. Lett. 129, 192001 (2022)



Contents

2/38

Analytic structure of S-matrix and shape of poles:

Energy Region Structure of S-matrix Shape

Distant from threshold Trivial (’flat’) in Energy Breit-Wigner

Near threshold Non-trivial in Energy Breit-Wigner

Objective:

Clarify analytic stucture of 2, 3-channel S-matrix: draw a ’map’ of the S-matrix

Near-threshold spectrum decomposition & extraction of pole properties
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Uniformization: mapping the non-trivial analytic structure of S-matrix

Mittag-Leffler Expansion: pole expansion of meromorphic functions
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Uniformization

’Multi-sheeted’ Riemann surface (e.g. Energy-parameterization)

Conformal Map

Uniformized Plane

Trivial surface (as much as possible), entire or partial region of a complex plane

• Analytic structure preserved

• Globally ’flat’ nature (constant curvature)→ clarifies ”distance”

Example: Single-channel S-matrix 2-body, RH cuts and poles
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Mittag-Leffler Expansion: Pole expansion of meromorphic functions

Corollary fromMittag-Leffler Theorem,

𝐹(𝑧) ∶ meromorphic, ∑
𝑛
|𝑟𝑛|/|𝑧𝑛|

𝑚+1 ∶ finite 𝑧𝑛, 𝑟𝑛 ∶ pole position, residue

𝐹(𝑧) = 𝑧𝑚∑
𝑛

𝑧−𝑚𝑛 𝑟𝑛
𝑧 − 𝑧𝑛

Pole terms

+ 𝐸(𝑧)
Subtraction terms

• Example: cot 𝑧 =
∞

∑
𝑛=−∞

1
𝑧 − 𝑛𝜋

Single-channel S-matrix

Mittag-Leffler Expansion by momentum 𝑘
J. Humblet, L.Rosenfeld, Nucl. Physics 26 (1961)

D. Ramírez Jiménez, N. Kelkar, Annals of Physics 396, 18 (2018)

𝐴(𝑘) = 𝑘𝑚∑
𝑛
[
𝑘−𝑚𝑛 𝑟𝑛
𝑘 − 𝑘𝑛

+
(−𝑘∗𝑛)

−𝑚𝑟∗𝑛
𝑘 + 𝑘∗𝑛

] + 𝑄(𝑘)
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Resonant-state Expansion of the Resolvent

T. Berggren, P. Lind, Phys. Rev. C 47, 768 (1993)

Spectral Expansion
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Pole # 1 Pole # 2 Pole # 3
I 0.096 � 0.2238 ± 0.003 ± 0.0028 0.34 � 0.348 ± 0.07 ± 0.088 0.00004 + 0.18 ± 0.00003 ± 0.18
⌘? [GeV] 1.530 � 0.0058 ± 0.002 ± 0.0028 1.7 + 0.078 ± 0.1 ± 0.088 1.3 � 0.00018 ± 0.4 ± 0.00048
AI? [GeV�1] �1.0 + 0.48 ± 0.4 ± 0.38 �20 � 508 ± 60 ± 208 �90000 + 508 ± 50000 ± 208
A⌘? �1.1 + 0.48 ± 0.4 ± 0.48 60 � 208 ± 20 ± 708 �600 + 300008 ± 500 ± 200008

Pole # 1 Pole # 2 Pole # 3 Pole # 4
I 0.25 � 0.238 ± 0.01 ± 0.028 0.253 � 0.0458 ± 0.006 ± 0.0068 0.30 + 0.038 ± 0.02 ± 0.028 0.000 + 0.348 ± 0.005 ± 0.038
⌘? [GeV] 4.319 � 0.0018 ± 0.004 ± 0.0028 4.442 � 0.0028 ± 0.004 ± 0.0048 4.47 + 0.038 ± 0.02 ± 0.028 3.5 + 0.018 ± 0.5 ± 0.088
AI? [GeV�1] �2 � 58 ± 4 ± 48 0.3 � 0.68 ± 0.8 ± 0.98 50 � 208 ± 20 ± 108 �80 + 1208 ± 2000 ± 208
A⌘? 0.8 � 0.88 ± 0.8 ± 0.88 �0.4 � 0.38 ± 0.6 ± 0.68 60 + 208 ± 20 ± 208 �2100 � 10008 ± 600 ± 300008
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Bound Resonance modified Continuum

Mittag-Leffler Expansion
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Riemann Sphere representation of the 2-channel S-matrix
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RS of 2-channel S-matrix 2-body, RH cuts and poles

• 4-sheeted √𝑠-plane: [tt], [bt], [tb], [bb]
e.g. [𝑡𝑏]+ means 𝐼𝑚𝑞1 > 0, 𝐼𝑚𝑞2 > 0, and 𝐼𝑚√𝑠 > 0
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Riemann Sphere representation of the 2-channel S-matrix
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𝑧 plane:
M. Kato, Ann. Phys. 31, 130 (1965)

𝑧 = 1
Δ12

(𝑞1 + 𝑞2),

𝑞𝑖 = √𝑠 − 𝜖
2
𝑖 , Δ12 = √𝜖

2
2 − 𝜖

2
1

𝜖1, 𝜖2 channel mass
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Mittag-Leffler Expansion on the Riemann Sphere
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Re z

Im z

[tb]

[bb]

[tt]

[bt]

Physical Domain

ML expansion contour

th1

th2

2-channel Mittag-Leffler Expansion

𝐴(𝑧) = ∑
𝑖

𝑟𝑖
𝑧 − 𝑧𝑖

+ (subtraction)

W. Y., O.M., PRC 102, 055201 (2020)

Unitarity of the S-matrix:

𝑆(−𝑧∗) = 𝑆(𝑧)∗

Symmetric poles about Im 𝑧-axis
→ appropriate threshold behavior

Lone pole-pair contribution:

𝐴𝑛 =
𝑟𝑛

𝑧 − 𝑧𝑛
−

𝑟∗𝑛
𝑧 + 𝑧∗𝑛

Im 𝐴𝑛(𝑧) = {
0, (√𝑠 < 𝜖1)

−Im
2𝑟𝑛

(𝑧𝑛 − 𝑖)2
𝑞1
Δ

+ 𝑂(𝑞21), (√𝑠 > 𝜖1)

Im 𝐴𝑛(𝑧) =

{
Im

2𝑟𝑛
1 − 𝑧2𝑛

− Re
4𝑟𝑛𝑧𝑛
(1 − 𝑧2𝑛)2

̃𝑞2
Δ

+ 𝑂(�̃�22), (√𝑠 < 𝜖2)

Im
2𝑟𝑛
1 − 𝑧2𝑛

− Im
2𝑟𝑛(1 + 𝑧

2
𝑛)

(1 − 𝑧2𝑛)2
𝑞2
Δ

+ 𝑂(𝑞22), (√𝑠 > 𝜖2)



Mittag-Leffler Expansion on the Riemann Sphere
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Lone pole-pair contribution, 𝐴𝑛
Under the condition, |𝑧𝑅| >> 1, 𝜁𝑅 >> 𝜂𝑅, where 𝑧𝑅 = 𝜁𝑅 + 𝑖𝜂𝑅,

𝑟𝑅
𝑧 − 𝑧𝑅

−
𝑟∗𝑅

𝑧 + 𝑧∗𝑅
|
𝑧≃𝜁𝑅

≃
Δ [𝑟𝑅𝜁𝑅 + (𝑟𝑅 − 𝑟

∗
𝑅)𝑖𝜂𝑅/2]

4(2𝑚𝑅 + 𝑖Γ𝑅/2)
1

√𝑠 − 𝑚𝑅 + 𝑖Γ𝑅/2

𝜖1 = 1.0, 𝜖2 = 2.0, Γ𝑅 = 0.2,𝑚𝑅 = 2.1, 4.1

Re
√

s

Im
√

s

th1 th2
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1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0
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Mittag-Leffler
Breit-Wigner

Mittag-Leffler
Breit-Wigner

Approriate threshold behaviors

Coincides with Breit-Wigner Form in the distant-to-threshold limit



Lineshapes: Pole at upper threshold
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Wren A. Yamada, Osamu Morimatsu, Toru Sato, Koichi Yazaki Phys. Rev. D 105, 014034 (2022)
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the distance between the pole and the nearest physical
point. Finally, and most importantly, the transition of the
spectrum is continuous. There is no essential difference
whether a pole is located on the [bt] sheet, [tb] sheet, or
[bb] sheet, contrary to the usual understanding that poles on
the [tb] sheet are irrelevant. Therefore, if the observed
spectrum is peaked about the upper threshold with exper-
imental uncertainties, it would be difficult, in addition,
nonessential to exactly determine which sheet the pole is
really located. What is important is the existence of a pole
near the upper threshold and how distant the pole is from
the physical energy, which should be sufficient for us to
know from experimental data.
Let us discuss the general behavior of the contribution

from a near-threshold pole in comparison to the Breit-
Wigner form. When e > 1, z is on the real axis, and we
parametrize z and zp as z ¼ x, zp ¼ xp þ iyp, where x, xp,
and yp are real. Then, a pole contribution is given by

−
1

π
Im

expðiϕpÞ
z − zp

¼ −
1

π

− cosϕpyp þ sinϕpðx − xpÞ
ðx − xpÞ2 þ y2p

; ð4Þ

which is a Breit-Wigner form in the variable x ¼ z (real)
with an additional phase. If we take the phase of the pole as,
ϕp ¼ 0, the contribution is given by

−
1

π
Im

expðiϕpÞ
z − zp

¼ 1

π

yp
ðx − xpÞ2 þ y2p

;

which is peaked at x ¼ xp. Now let us consider the
behavior when 0 < e < 1; i.e., z is on the unit circle.
We can parametrize z and zp as z ¼ expðiθÞ, zp ¼
rp expðiθpÞ, where θ, rp, and θp are real parameters.
Then, a pole contribution becomes

TABLE I. The pole position on the complex z plane, zp, the complex pole energy, ep, the nearest physical energy, e0, and the distance
from the physical energy, γ0, for poles A–F.

A B C D E F

zp 0.869þ 0.233i 0.895þ 0.094i 0.908 − 0.038i 0.962 − 0.092i 1.100 − 0.100i 1.300 − 0.100i
ep 0.943 − 0.053i 1.000 − 0.022i 1.007þ 0.008i 0.992þ 0.007i 1.002 − 0.018i 1.065 − 0.043i
e0 0.933 0.989 1 1 1.01 1.065
γ0 0.100 0.100 0.100 0.100 0.100 0.100
Sheet [bt] [bt] [tb] [tb] [bb] [bb]

(a) (b) (c)

(d) (e) (f)

FIG. 3. The “normalized” pole-pair contributions, fðz; zp;ϕpÞ, from poles A–F. Two cases are shown with different phases of
residues, ϕp ¼ ϕ0 and ϕ0 − π=2, where ϕ0 is, respectively, chosen as ϕ0 ¼ θp − π=2, Argðzp − 1Þ − π=2, and 0 for poles on the [bt],
[tb], and [bb] sheet, so that the contribution, fðz; zp;ϕpÞ, is maximized at physical energy e0.

YAMADA, MORIMATSU, SATO, and YAZAKI PHYS. REV. D 105, 014034 (2022)

014034-4

Resonance: [𝑏𝑡]−, [𝑏𝑏]−sheet, ”Threshold Cusp”: [𝑡𝑏]+sheet
’Peak position’, ’width’ = closest physical point, and its distance on 𝑧 ≠ Re 𝐸, Im 𝐸
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Flatté Formula

S. M. Flatté, Phys. Lett., B63, 224 (1976)

𝐴11 =
−𝛾1𝑘1

𝐸 − 𝑚 + 𝑖𝛾1𝑘1 + 𝑖𝛾2𝑘2

Hello

Wren A. Yamada1, 2

1Department of Physics, Faculty of Science, University of Tokyo, 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033, Japan
2Theory Center, Institute of Particle and Nuclear Studies (IPNS),

High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 205-0801, Japan

(Dated: December 1, 2022)
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AI? [GeV�1] �1.0 + 0.48 ± 0.4 ± 0.38 �20 � 508 ± 60 ± 208 �90000 + 508 ± 50000 ± 208
A⌘? �1.1 + 0.48 ± 0.4 ± 0.48 60 � 208 ± 20 ± 708 �600 + 300008 ± 500 ± 200008

𝐴11 = ∑
𝑖=1,2

[
𝑟𝑖

𝑧 − 𝑧𝑖
+

𝑟∗𝑖
𝑧 + 𝑧∗𝑖

]

2-pole Mittag-Leffler Expansion

pole position condition: |𝑧1𝑧2| = 1 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5 < = 0.9, �1 = 0.1, �2 = 0.7
< = 1.0, �1 = 0.1, �2 = 0.7
< = 1.1, �1 = 0.1, �2 = 0.7

Always contain 2 pair of poles: one on [𝑡𝑏]/[𝑏𝑡], the other on [𝑏𝑏]-sheet
At inelastic threshold: complex scattering length, complex effective range→ 4

parameters (Flatté has 3. Leading to additional constraint |𝑧1𝑧2| = 1)
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Mittag-Leffler Expansion: Pole decomposition on the uniformized plane

2-channel uniformization plane: non-unique

Smooth bijective mapping CP1 →CP1 induces new uniformization plane
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4? = (B? � 42
1)/(42

2 � 42
1),

I? = 41/2
? + (4? � 1)1/2.

41 = 3508 MeV (��/#), 42 = 3959 MeV (⇡̄⇡⇤)

L8=C = �1
2 [⌫⌫]

†⇠̂[⌫⌫], ⇠̂ =
⇠
8

266664
1 2 �

p
3

2 4 �2
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3
�
p

3 �2
p

3 3

377775
8�̂ = �8⇠̂


1 � ⌧̂⇠̂

��1
, ⌧8 = �8⇠8 :8/2�

�11 = �✏ I3 + I
I4 + 1 + �I2 + 8[(✏ + ✏0)I3 + (✏ � ✏0)I]

✏ = 4
✏1⇠1
�

, ✏0 = 4
✏2
p
⇠1⇠2

�
, � = 4

⇠1

�2 [⌘1 + ⌘2 � 2<]

�DC(CP1) � %⌧!(2,C)

I 7! F =
�I + �
✏I + ⇣

, where, 34C

� �
✏ ⇣

�
< 0

Pole # 1 Pole # 2 Pole # 3
I 0.096 � 0.2238 ± 0.003 ± 0.0028 0.34 � 0.348 ± 0.07 ± 0.088 0.00004 + 0.18 ± 0.00003 ± 0.18
⌘? [GeV] 1.530 � 0.0058 ± 0.002 ± 0.0028 1.7 + 0.078 ± 0.1 ± 0.088 1.3 � 0.00018 ± 0.4 ± 0.00048
AI? [GeV�1] �1.0 + 0.48 ± 0.4 ± 0.38 �20 � 508 ± 60 ± 208 �90000 + 508 ± 50000 ± 208
A⌘? �1.1 + 0.48 ± 0.4 ± 0.48 60 � 208 ± 20 ± 708 �600 + 300008 ± 500 ± 200008

Question: Is the pole decomposition on 𝑧-plane and 𝑤-plane identical?

Ex: 𝜁 = 1/𝑧 𝑧 (𝜁): ”north pole” (”south pole”) projection of Riemann Sphere

𝑟[𝑧]𝑛
𝑧 − 𝑧𝑛

Pole term on 𝑧

= −𝑟[𝑧]𝑛
𝜁𝜁𝑛
𝜁 − 𝜁𝑛

=
𝑟[𝜁 ]𝑛
𝜁𝑛

𝜁
𝜁 − 𝜁𝑛

=
𝑟[𝜁 ]𝑛
𝜁 − 𝜁𝑛

+
𝑟[𝜁 ]𝑛
𝜁𝑛

Pole term on 𝜁

Pole term has indefiniteness of a constant fixed by imposing boundary condition:

𝐴𝑛 → 0 as approaching the infinity point on physical sheet

MLE Pole decomposition unique under CP1 →CP1 transformations
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Non-algebraic mapping CP1 →C/Z: ”Cylinder” representation
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�
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�DC(CP1) � %⌧!(2,C)

I 7! F =
�I + �
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, where, 34C

� �
✏ ⇣

�
< 0

A[✓]=

✓ � ✓=
=

A[✓]= (I � I= + I=)I=
I= � I

=
A[I]=

I � I=
+ A[✓]=

◆ 7! $ =
π ◆

0

3✓
1 + ✓2 = arctan◆ (◆ < ±8)

Periodicity: 𝐴(𝜔 + 𝜋ℤ) = 𝐴(𝜔)
Mittag-Leffler Expansion:

𝐴(𝜔) = ∑
𝑛
𝑟𝑛[

1
𝜔 − 𝜔𝑛

+ ∑
𝑚≠0

1
𝜔 − 𝜔𝑛 + 𝑚𝜋

Corrections

] = ∑
𝑛

𝑟𝑛 cot(𝜔 − 𝜔𝑛)

Pole term

3

— Uniformization: C/Z-representation

We do not neccesarily need the infinity points, {1±}, of CP1
. Thus we can consider the 2-channel S-matrix as

a 2-punctured Riemann sphere if convenient. Since, CP1 � {0,1} ' C� {0} ' C/Z, the S-matrix can be mapped

onto a cylinder, which is a rectangular (one side has infinite length) domain on the complex plane.

Start from a Möbius transformation,

z 7! iz +1
z + i

⌘ ⌘.

Note that the infinity points of CP1
are mapped as {1±} 7! ±i on the ⌘-plane.

Consider a transformation defined by a integral with an algebraic integrand,

⌘ 7! ! ⌘
Z ⌘

0

d⇠
1+ ⇠2

 
= arctan⌘

!
, for, ⌘ , ±i. (5)

Note that the integral has a period of ⇡. This transformation mapps CP1 � {1±}! C/Z.

Mittag-Leffler Expansion is given by,

A(!) =
X

!n2⌦

"
r[!]
n

! �!n
+

X

n2Z�{0}

r[!]
n

! �!n �n⇡

#
,

=
X

!n2⌦
r[!]
n cot(! �!n),

(6)

for ! 2 ⌦, where ⌦ is the fundamental period, Re ! 2 (�⇡/2,⇡/2]. Note that infinite contributions from the

’same’ pole arise due to the non-trivial structure of C/Z.

The only automorphisms of C/Z are, z 7! z+a, and z 7! �z. Pole contribution, r[!]
p cot(!�!p), is invariant under

such transformations.

question?

Is the ’pole shape’ of CP1
-representation, and C/Z-representation the same?

! same upto a constant determined by a boundary condition.

r
[⌘]
p

⌘ � ⌘p
=
(1+ tan2!p) r

[!]
p

tan! � tan!p

= r[!]
p

1+ tan! tan!p � tan!p(tan! � tan!p)
tan! � tan!p

= r[!]
p cot(! �!p)� r[!]

p tan!p.

Spheres with more than three punctures fall into a totally different class of geometry. Check ’3-punctured sphere’...
when fixing curvature constant, 3-punctured sphere has negative curvature.

V. 3-CHANNEL MITTAG-LEFFLER EXPANSION

— Chow’s theorem, compact riemann surface is a algebraic curve. Uniformization variable is given by an integral

of algebraic functions?
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[1CC]

[11C]

[C1C]

Re $

C/Z

MLE pole decomposition is unique under many different uniformization planes

Obtain same results when fitting observables by a truncated MLE regardless of

the choise of the uniformization plane (At least for CP1, C/Z)
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Sphere of 2-channel system: 𝜋Σ, �̄�𝑁
3-pole Mittag-Leffler Expansion,

common poles

𝑑𝜎(𝜋Σ)
𝑑𝑚

= Im
3

∑
𝑛=1
[
𝑐(𝜋Σ)𝑛
𝑧 − 𝑧𝑛

−
𝑐(𝜋Σ)∗𝑛
𝑧 + 𝑧∗𝑛

],

𝜎(𝑖𝑓) =
𝑘𝑓
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3

∑
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−
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FIG. 6. Results for the invariant-mass distributions of π0"0. Details are the same as in Fig. 4. In the π 0"0 channel the 2σ -confidence
interval is wider than that in the π+"− and π−"+ channels due to large experimental errors.

A. Fitting procedure

We fit the uniformized Mittag-Leffler expansion with m
resonant-pole pairs to the invariant-mass distributions of
π+"−, π−"+, and π0"0 final states in the reaction, γ p →
K+π", measured with CLAS at Jefferson Lab for center-of-
mass energies 1.95 < W < 2.85 GeV [33] as

dσW

dM
= Im

m∑

n=1

(
cW (m)

n

z − z(m)
n

− cW (m)∗
n

z + z(m)∗
n

)
, (17)

and the K− p elastic and inelastic cross sections, K− p →
K− p, K̄0n, π+"−, π−"+ [26–32] as

σ i f = 1
16π2s

k f

ki
Im

m∑

n=1

(
ci f (m)

n

z − z(m)
n

− ci f (m)∗
n

z + z(m)∗
n

)

. (18)

In Eq. (17), dσW /dM is the distribution of the π" invari-
ant mass M, with center-of-mass energy W of the reaction
γ p → K+π". In Eq. (18), σ i f is the cross section of the scat-
tering process, i → f , s is the center-of-mass energy squared
and ki (k f ) is the momentum of the initial (final) state in
the center-of-mass frame. The invariant-mass distribution was

measured in nine different center-of-mass energies W in the
range 1.95–2.85 GeV for each channel, π+"−, π−"+, and
π0"0. Each dataset of dσW /dM and σ i f is fit with different
residues but common pole positions. Therefore, in the case
of m resonant-pole pairs and N data sets we have m and
mN complex parameters for the pole positions and residues,
respectively. The behavior of the π" invariant-mass distri-
butions in the reaction γ p → K+π" is sensitive to the π"
threshold energies, which are slightly different for the π+"−,
π−"+, and π0"0 channels. Therefore, we take into account
the difference of the threshold energies with minimum modifi-
cations, although we basically regard %(1405) as a resonance
in the coupled two channels, π" and K̄N with isospin as an
approximately good quantum number. Namely, we define z
differently for each of the π+"−, π−"+, and π0"0 chan-
nels with slightly different π" threshold energies in the fit
of the π" invariant-mass distributions. We neither take into
account the difference of K̄N threshold energies in the π"
invariant-mass distributions nor the difference of π" and
K̄N threshold energies in the K− p elastic and inelastic cross
sections because it is simply unnecessary. As explained above,
each dataset of dσW /dM and σ i f is fit with different residues

045201-6
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TABLE VI. Results for the pole positions by the uniformized Mittag-Leffler expansion with m = 1, 2, and 3. zn (n = 1, 2, 3) is the
dimensionless pole position on the z plane and

√
sn (n = 1, 2, 3) is the pole position on the

√
s plane with units of GeV.

m = 1 m = 2 m = 3

z(m)
1 0.52 + 0.012i ± 0.01 ± 0.009i 0.551 + 0.323i ± 0.007 ± 0.008i 0.524 + 0.316i ± 0.006 ± 0.006i√
s(m)

1 1.478 − 0.003i ± 0.004 ± 0.002i 1.420 − 0.042i ± 0.001 ± 0.002i 1.420 − 0.048i ± 0.001 ± 0.002i
z(m)

2 2.62 − 0.75i ± 0.09 ± 0.06i 1.64 − 1.04i ± 0.07 ± 0.09i√
s(m)

2 1.53 − 0.083i ± 0.01 ± 0.004i 1.43 − 0.074i ± 0.01 ± 0.004i
z(m)

3 2.323 − 0.069i ± 0.003 ± 0.003i√
s(m)

3 1.5138 − 0.0068i ± 0.0003 ± 0.0003i

the cases m = 1 and 2, it is clear that we need at least two
resonant-pole pair contributions to successfully reproduce the
broad peak structure below the K̄N threshold and the con-
tinuous spectrum above the K̄N threshold. By the addition
of the third resonant-pole pair contribution, the narrow peak
structure around 1520 MeV can also be taken into account,
resulting in a satisfying approximation of the actual spectrum.

Table VI and Fig. 11 display the fit pole positions for
cases, m = 1, 2, and 3. The position of pole 1 significantly
shifts as we increase the number of terms from m = 1 to
m = 2, whereas it hardly moves when increasing from m = 2
to m = 3. This implies that the convergence of pole 1 is almost
realized for the case m = 3. The convergence of pole 2 cannot
be seen up to m = 3 but pole 2 and pole 3 are positioned
further and further away from pole 1.

These behaviors imply that the expansion with m = 3 is
almost convergent in the vicinity of pole 1.

FIG. 11. Results for the pole positions on the z plane by the
uniformized Mittag-Leffler expansion with m = 1, 2, and 3.

D. Discussion

As stated above, we found only a single pair of poles,
1 + 1∗, on the (−+) sheet of the complex

√
s plane, which

sufficiently explains the broad peak structure between the
π" and K̄N thresholds. Its contribution to the uniformized
Mittag-Leffler expansion converges up to m = 3. This leads
us to identify pole 1 as #(1405). Also, it is natural to identify
pole 3 as #(1520) due to its small width, even though the
convergence of 3 + 3∗ has not been confirmed up to m = 3.
The interpretation of pole 2 is less intuitive, which cannot be
identified with any physical resonance. The contribution of
2 + 2∗ gives the continuous spectrum above the K̄N threshold
together with the tail of the contribution of 1 + 1∗. It should be
also noted that the contribution of 2 + 2∗ is mostly negative.

Usually, the observed spectrum is naively interpreted as
the sum of physical resonances and background contribu-
tions. However, there is no well-defined criterion when a pole
should be identified as a physical resonance or not. In the
uniformized Mittag-Leffler expansion, the observed spectrum
is represented as a sum of pole contributions, which is well
defined. There is no need to identify a pole as a physical
resonance or not. Obviously, all the pole contributions in the
uniformized Mittag-Leffler expansion cannot be interpreted as
resonance contributions in the usual sense.

The results obtained in a model-independent manner by
the use of the uniformized Mittag-Leffler expansion support a
single-pole picture of #(1405). To solidify this claim, it may
be useful to take into account more than three resonant-pole
pair terms in the uniformized Mittag-Leffler expansion.

IV. SUMMARY AND CONCLUSION

In this paper we applied the uniformized Mittag-Leffler
expansion, proposed in our previous paper, to the #(1405)
resonance. We expanded the observable as a sum of resonant-
pole pairs with a variable which expresses the observable
to be single valued, and fit it to experimental data of the
invariant-mass distribution of π+"−, π−"+, π0"0 final
states in the reaction γ p → K+π" and the elastic and inelas-
tic cross sections K− p → K− p, K̄0n, π+"−, π−"+. Thus,
we determined the resonant energy, width, and residues in a
model-independent manner.
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(a) (b)

FIG. 3. (a) Analytic structure of the double-channel S matrix in the
√

s plane, and (b) the uniformized z plane. In the
√

s plane, the unitary
cuts run along the real axis from ε1 to ∞ (blue) and from ε2 to ∞ (green), and the four Riemann sheets of the

√
s plane correspond to each

region in z labeled as (±±). The red line shows the physical region accessible by experiment.

where s is the center-of-mass energy squared, k f , ki are the
final and initial momenta in the center-of-mass frame, respec-
tively, and F represents the vertex producing two-body final
states. For our convenience let A represent either T or F†GF .
A has the same analytic structure as the S matrix.

From the unitary condition, the S matrix has a branch
cut running from each threshold along the positive real axis
in the

√
s plane to infinity, known as unitary cuts. Thus, in

the variable
√

s, A is not meromorphic, and Eq. (3) or (4)
cannot be applied directly. To explicitly write A in the form
of a Mittag-Leffler expansion, one must choose an appropri-
ate parametrization so that A becomes meromorphic. This
process is called uniformization [5]. Once uniformization is
performed, A can be decomposed into a series of the form
of Eq. (3) or (4). In addition, the unitarity of the S matrix
also imposes a symmetry condition on the position of the pole
positions and the residues of A. The poles are positioned sym-
metric about the imaginary axis in the uniformized z plane,
and the residues cn(zn) satisfy the following relationship:

cn(zn) = −c∗
n (−z∗

n ). (7)

Note that, when considering the pole symmetry condition, the
subtraction constant in Eq. (4) is real, and thus the imaginary
part of Eqs. (3) and (4) take the same form.

To summarize, by an appropriate choice of variable z, the
imaginary part of A can be written as

ImA(z) = Im
∑

n

(
cn

z − zn
− c∗

n

z + z∗
n

)
, (8)

which we will call the uniformized Mittag-Leffler expan-
sion. Expressing observables in the form of the uniformized
Mittag-Leffler expansion and comparing them with the ac-
tual experimental data, we can obtain the pole positions
and residues of the observables from experimental data in a
model-independent manner. Let us call this the uniformized
Mittag-Leffler expansion approach.

Explicit procedures are as follows:

(i) Find an appropriate kinetic variable z which uni-
formizes the S matrix.

(ii) Truncate the uniformized Mittag-Leffler expansion
and approximate A(z) by a few (m) pairs of the pole
terms as

ImA(z) = Im
m∑

n=1

(
c(m)

n

z − z(m)
n

− c(m)∗
n

z + z(m)∗
n

)
. (9)

(iii) Determine the complex pole positions z(m)
n and

residues c(m)
n (n = 1, . . . , m) by fitting A to the ex-

perimental data.
iv Regard converged z(m)

n , c(m)
n as the actual pole posi-

tions and residues.

The two-body double-channel S matrix can be expressed
as a four-sheeted Riemann surface with unitary cuts running
from each threshold ε1, ε2 to ∞ along the real axis, in the
parametrization of the center-of-mass energy

√
s. The thresh-

old energy εi is

εi = Mi + mi, (10)

TABLE I. Results for the pole positions by the uniformized Mittag-Leffler expansion with m = 3. zn is the dimensionless pole position on
the z plane and

√
sn in units of GeV on the

√
s plane.

Pole 1 Pole 2 Pole 3

z(3)
n 0.5243+0.3159i ± 0.0062 ± 0.0058i 1.6402−1.042i ± 0.0684 ± 0.0904i 2.3227 − 0.0687i ± 0.0033 ± 0.0031i√
s(3)

n 1.4203−0.0475i ± 0.0011 ± 0.0015i 1.4283−0.074i ± 0.01 ± 0.0037i 1.5138 − 0.0068i ± 0.0003 ± 0.0003i

045201-3Chiral unitary calculation
Y. Ikeda, T. Hyodo and W. Weise, Phys. Lett. B 706, 63 (2011)

Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881, 98 (2012)

Z.-H. Guo and J. Oller, Phys. Rev. C 87, 3, 035202 (2013)

M. Mai and U.-G. Meißner, Eur. Phys. J. A 51, 3, 30 (2015)

2 83. Pole Structure of the »(1405) Region

LEPS collaboration [21] and from the CLAS collaboration [22, 23], electroproduction data from
the CLAS collaboration [24], and proton-proton collision data from COSY [25] and the HADES
collaboration [26]), will shed light on the position of the second pole. The fiÀ spectra from the
CLAS data are analyzed in Ref. [27] and Ref. [18]. It was shown in Ref. [18] that several solutions,
which agree with the scattering data, are ruled out if confronted with the recent CLAS data. The
remaining solutions are collected as solution #2 and solution #4 in Table 83.1. The HADES data
are analyzed in Ref. [28] and Ref [29]. Although the result of the pole found in Ref. [28] is not
compatible with other results, the authors of Ref. [29] invoke the anomalous triangle singularity
mechanism to argue that the invariant mass distribution of the fiÀ system is found at lower masses
than in other reactions. It is thus desirable to perform more comprehensive analyses of fiÀ spectra
together with the systematic error analysis of the scattering data.

Table 83.1: Comparison of the pole positions of »(1405) in the complex
energy plane from next-to-leading order chiral unitary coupled-channel
approaches including the SIDDHARTA constraint. The lower two results
also include the CLAS photoproduction data.

approach pole 1 [MeV] pole 2 [MeV]
Refs. [14, 15], NLO 1424+7

≠23 ≠ i 26+3
≠14 1381+18

≠6 ≠ i 81+19
≠8

Ref. [17], Fit II 1421+3
≠2 ≠ i 19+8

≠5 1388+9
≠9 ≠ i 114+24

≠25
Ref. [18], solution #2 1434+2

≠2 ≠ i 10+2
≠1 1330+4

≠5 ≠ i 56+17
≠11

Ref. [18], solution #4 1429+8
≠7 ≠ i 12+2

≠3 1325+15
≠15 ≠ i 90+12

≠18
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a mass difference of 2:1 MeV=c2, a width difference of
3.7 MeV, and production ratio difference of 2.6% absolute.
Assuming the Zcð3900Þ couples strongly with D !D# results
in an energy dependence of the total width [22], and the fit
yields a difference of 2:1 MeV=c2 for mass, 15.4 MeV for
width, and no change for the production ratio. We estimate
the uncertainty due to the background shape by changing to
a third-order polynomial or a phase space shape, varying
the fit range, and varying the requirements on the !2 of the
kinematic fit. We find differences of 3:5 MeV=c2 for mass,
12.1 MeV for width, and 7.1% absolute for the production
ratio. Uncertainties due to the mass resolution are esti-
mated by increasing the resolution determined by MC
simulations by 16%, which is the difference between the
MC simulated and measured mass resolutions of the J=c
and D0 signals. We find the difference is 1.0 MeV in the
width, and 0.2% absolute in the production ratio, which are
taken as the systematic errors. Assuming all the sources of
systematic uncertainty are independent, the total system-
atic error is 4:9 MeV=c2 for mass, 20 MeV for width and
7.5% for the production ratio.

In Summary, we have studied eþe% ! "þ"%J=c at a
c.m. energy of 4.26 GeV. The cross section is measured to
be ð62:9& 1:9& 3:7Þ pb, which agrees with the existing
results from the BABAR [5], Belle [3], and CLEO [4]
experiments. In addition, a structure with a mass of
ð3899:0& 3:6& 4:9Þ MeV=c2 and a width of ð46& 10&
20Þ MeV is observed in the "&J=c mass spectrum. This
structure couples to charmonium and has an electric
charge, which is suggestive of a state containing more
quarks than just a charm and anticharm quark. Similar
studies were performed in B decays, with unconfirmed
structures reported in the "&c ð3686Þ and "&!c1 systems
[23–26]. It is also noted that model-dependent calculations
exist that attempt to explain the charged bottomonium-
like structures which may also apply to the charmonium-
like structures, and there were model predictions of

charmoniumlike structures near the D !D# and D# !D#

thresholds [27].
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FIG. 4 (color online). Fit to the Mmaxð"&J=c Þ distribution as
described in the text. Dots with error bars are data; the red solid
curve shows the total fit, and the blue dotted curve the back-
ground from the fit; the red dotted-dashed histogram shows the
result of a phase space (PHSP) MC simulation; and the green
shaded histogram shows the normalized J=c sideband events.
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select the Dþ candidates. We use events in 30 MeV=c2-
wide sideband regions centered at 40 MeV=c2 above
and below the D mass peaks to evaluate non-D meson
backgrounds.
Figure 1(a) shows the distribution of masses recoiling

against the detected πþD0 system [23], where a prominent
peak at mD"− is evident. The solid-line histogram shows the
same distribution for MC-simulated eþe− → πþD0D"−,
D0 → K−πþ three-body phase-space events. Because of
the limited phase space, some events from the isospin part-
ner decay πþZcð3885Þ−, Zcð3885Þ− → D−D"0, where the
detected D0 is from the D"0 decay, also peak near mD"−, as
shown by the dashed histogram for MC-simulated
eþe− → πþZcð3885Þ−, Zcð3885Þ− → D−D"0, D"0 → γ
or π0D0 decays with the mass and width of the
Zcð3885Þ set to our final measured values. Since the
DD̄" invariant mass distribution is equivalent to the bach-
elor pion recoil mass spectrum, the shape of the
Zcð3885Þ → DD̄" signal peak is not sensitive to the parent-
age of the D meson that is used for the event tagging.
Figure 1(b) shows the corresponding plot for π−Dþ-tag
events, where the solid histogram shows the contribution
from MC-simulated eþe− → π−DþD̄"0 three-body
phase-space events and the dashed histogram shows the
cross feed from MC-simulated eþe− → π−Zcð3885Þþ,
Zcð3885Þþ → D̄0D"þ, D"þ → π0Dþ events.
We apply a two-constraint (2C) kinematic fit to the

selected events that constrains the invariant mass of the
D0 (Dþ) candidate to be equal to mD0 (mDþ) and the mass
recoiling from the πþD0 (π−Dþ) to be equal to mD"−

(mD̄"0). If there is more than one bachelor pion candidate
in an event, we retain the one with the smallest χ2 from
the 2C fit. Events with χ2 < 30 are retained for further
analysis. For the πþD0-tag analysis, we require
MðπþD0Þ > 2.02 GeV=c2 to reject eþe− → D"þD"−,
D"þ → πþD0 events. Figure 2(a) [2(b)] shows the distribu-
tion ofD0D"− (DþD̄"0) invariant masses recoiling from the
bachelor pion for the πþD0- (π−Dþ-) tag events. Both dis-
tributions have a distinct peak near the mD þmD̄" mass
threshold. For cross-feed events, the reconstructed D
meson is not, in fact, recoiling from a D̄", and the efficiency
for these events decreases with increasing DD̄" mass. This
acceptance variation is not sufficient to produce a peaking

structure, and its influence on the signal parameter deter-
mination is small compared to other sources of systematic
error.
To characterize the observed enhancement and determine

the signal yield, we fit the histograms of Figs. 2(a) and 2(b)
using a mass-dependent-width Breit-Wigner (BW) line
shape using the parametrization described in Ref. [24] to
model the signal and smooth threshold functions to re-
present the nonpeaking background. In the default fits,
we assume S waves for Zcð3885Þ production and decay,
and leave the Zcð3885Þ mass, width, and yield as free
parameters. We multiply the BW by the mass-dependent
efficiency to form the signal probability density function.
Mass resolution effects are less than 1 MeV=c2 and
ignored. For the default nonpeaking background, we
use: fbkgðmDD̄" Þ∝ ðmDD̄" −MminÞcðMmax−mDD̄"Þd, where
Mmin and Mmax are the minimum and maximum kinemat-
ically allowed masses, respectively, and c and d are free
parameters.
The solid curves in Fig. 2 show the fit results and the

dashed curves show the nonresonant background. The
Zcð3885Þ signal significance for each fit is greater than
18σ. The fitted BW mass and width from the πþD0

(π−Dþ)-tag sample are 3889:2% 1.8 MeV=c2 and 28:1%
4.1 MeV (3891:8% 1.8 MeV=c2 and 27:8% 3.9 MeV),
respectively, where the errors are statistical only. Since
the mass and width of a mass-dependent-width BW are
model dependent [26], we solve for the corresponding com-
plex quantities P ¼ Mpole − iΓpole=2 for which the BW
denominators are zero, and useMpole and Γpole to character-
ize the Zcð3885Þ. These are listed in Table I.
Monte Carlo studies indicate that the process

eþe− → DD̄1ð2420Þ, D̄1ð2420Þ → D̄"π, where D1ð2420Þ
is the lightest established D"π resonance with
MD1

¼ 2421:3% 0.6 MeV=c2 and ΓD1
¼ 27:1%

2.7 MeV [6], would produce a near-threshold reflection
peak in the DD̄" mass distribution. The D1ð2420Þ peak
mass is 30 MeV=c2 above the

ffiffiffi
s

p −mD kinematic boun-
dary, which suggests that contributions from DD̄1ð2420Þ
final states would be small. However, some models for
the Yð4260Þ attribute it to a bound DD̄1 molecular state
[13], in which case subthreshold D̄1 → D̄"π decays
might be important and, possibly, produce a reflection peak
in the DD̄" mass distribution that mimics a Zcð3885Þ
signal.
We study this possibility by separating the events into

two samples according to j cos θπDj > 0.5 and

FIG. 2 (color online). The (a) MðD0D"−Þ and
(b) MðDþD̄"0Þ distributions for selected events. The curves
are described in the text.

TABLE I. The pole mass Mpole and width Γpole, signal yields
and fit quality (χ2=ndf) for the two tag samples.

Tag Mpole ðMeV=c2Þ Γpole (MeV) Zc signal (evts) χ2=ndf

πþD0 3882:3% 1.5 24:6% 3.3 502% 41 54=54
π−Dþ 3885:5% 1.5 24:9% 3.2 710% 54 60=54
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HALQCD poles on the 𝜋𝐽/𝜓-�̄�𝐷∗ sphere (𝑚𝜋 = 411MeV)

In Sec. IVA, we reexamine the HAL QCD results
including the poles conjugate to those given in Ref. [20]
from the symmetry of the S matrix and calculating the pole
contributions in the framework of the two-channel unifor-
mized Mittag-Leffler expansion. There, we cannot deter-
mine the relative contributions of the poles in the spectrum
since we do not know the residues of the poles in Ref. [20].
Then, in Sec. IV B, we set up a separable potential model in
which we have a pole near the D̄D! threshold similar to
Ref. [20] and show that the contribution of such a pole
really dominates the spectrum in the vicinity of the D̄D!

threshold.

A. HAL QCD results

There have already been many theoretical studies which
try to clarify the structure of Zð3900Þ (see Refs. [1–10] and
references therein). Among them, we focus on the work by
the HAL QCD Collaboration [20,21]. They studied the
πJ=ψ − ρηc − D̄D! coupled-channel interactions using
(2þ 1)-flavor full QCD gauge configurations in order to
study the structure of Zð3900Þ. They also examined the
pole positions of the S matrix on the complex energy plane
focusing on those corresponding to usual resonances. They
found some poles located far from the physical region.
From this observation, they concluded that Zð3900Þ is not a
usual resonance but a threshold cusp.
We found it hard to understand their conclusion from the

viewpoint of uniformized Mittag-Leffler expansion, in
which the physical spectrum is given as a sum of pole
contributions in terms of the uniformization variable. In the

following we point out that their results do indicate the
existence of the S-matrix pole near the D̄D! threshold,
which is most likely the origin of the peak found in their
calculation.
In order to study the whole region of the πJ=ψ − ρηc −

D̄D! coupled channel, it would be ideal to implement
three-channel uniformization, by which the three-channel S
matrix is single valued on the whole plane of the unform-
ization variable (global uniformization). However, since the
three-channel uniformization is very much involved, in this
paper, we focus on the region near the D̄D! threshold. The
two-channel uniformization is sufficient for our purpose, by
which the three-channel S matrix can be regarded as single
valued near the D̄D! threshold (local uniformization) but
not on the whole plane of the unformization variable. In the
following, we employ the uniformization variable of
πJ=ψ − D̄D! two-channel system. Effects of the coupling
to the ρηc channel will emerge as branch cuts in the
complex z plane as shown in Fig. 5, which is neglected.
According to the pole symmetry condition, Eq. (7), there

exist conjugate poles corresponding to the poles given in
the HAL QCD results [20]. Table II shows the scaled
energy, ep, the uniformizarion variables, zp, for poles, 1–5
(Imep < 0), given in Ref. [20] and for their conjugate
poles, 1!–5! (Imep > 0), not given in Ref. [20]. Then,
Fig. 5 shows where the poles are located on the complex z
plane. If one compares the location of poles 1–5 and their
conjugate poles 1!–5!, 1! is much farther than 1 from the
physical region, but 2! and 3! are much nearer than 2 and 3
to the physical region. In fact, among all the poles, 1–5 and

FIG. 5. The (locally) uniformized complex z plane for the πJ=ψ − ρηc − D̄D! coupled-channel S matrix. πJ=ψ , ρηc, and D̄D! denote
the corresponding thresholds on the physical energy, respectively. The z plane is a two-sheeted Riemann surface connected by the two
branch cuts running along the unit circle. Both the S-matrix poles given in Ref. [20], 1–5, and their conjugate poles 1!–5!, (not given in
Ref. [20]) are shown by filled and unfilled circles.
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1!–5!, 3! is the nearest to the physical region, the D̄D!

threshold, and the next is 2!. Poles 4 and 5 together with
their conjugate poles 4! and 5! are located on the
“unphysical” sheet of z and are far from the physical
region and therefore are not be discussed any more.
Figure 6 shows the normalized spectrum f for pole pairs,
2–2! and 3–3!. As expected, contributions from 2! and 3!

are peaked at the D̄D! threshold, and their contributions are
much larger than those of 2 and 3.
The above argument shows that the HAL QCD results

indeed imply the existence of S-matrix poles near the D̄D!

threshold. The contribution from the near-threshold poles
shows narrow structures at the D̄D! threshold and is most
likely the source of the observed Zð3900Þ enhancement.

B. Separable potential model

In this section, we analyze the scattering amplitude of a
simple nonrelativistic two-channel scattering. We show an

explicit case that a pole located on the [tb] sheet plays an
essential role for the enhancement of the scattering ampli-
tude at the upper threshold. The scattering energy, E, is
expressed in terms of on-shell momentum pi (i ¼ 1, 2) as

E ¼ p2
i

2μi
þ Δi; ð8Þ

where μi and Δi are the reduced mass and sum of the
masses of two particles, respectively. We take Δ2 > Δ1.
The interaction, Vij, is given by a separable form,

Vijðp0; pÞ ¼ gðp0ÞvijgðpÞ; ð9Þ

with a monopole form factor, gðpÞ ¼ β2=ðβ2 þ p2Þ.
We keep only the off-diagonal potential, i.e., v11 ¼

v22 ¼ 0 and v12 ¼ v, which is motivated from the effective
potential for the πJ=ψ − ρηc −DD̄! system given by the

FIG. 6. “Normalized” pole-pair contributions, fðz; zp;ϕpÞ, from poles 2, 2! and 3, 3! for the cases where the phase of the residue is
ϕp ¼ 0 (above left, above right) and ϕp ¼ −π=2 (below left, below right).

TABLE II. The uniformization variables, zp, and the scaled energy, ep, for S-matrix poles, 1–5 (Imep < 0), given in Ref. [20], and for
their conjugate poles, 1!–5! (Imep > 0), not given in Ref. [20]. Also shown is the sheet on which each pole is positioned.

1; 1! 2; 2! 3; 3! 4; 4! 5; 5!

zp &1.11 − 0.95i ∓0.74 − 0.53i ∓0.86 − 0.45i ∓0.65 − 0.54i &0.79 − 1.34i
ep 0.60 ∓ 0.41i 0.66 ∓ 0.09i 0.79 ∓ 0.02i 0.60 ∓ 0.17i 0.16 ∓ 0.44i
Sheet [bbb] [ttb] [ttb] [tbb] [btb]
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2-channel Mittag-Leffler Expansion
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1!–5!, 3! is the nearest to the physical region, the D̄D!

threshold, and the next is 2!. Poles 4 and 5 together with
their conjugate poles 4! and 5! are located on the
“unphysical” sheet of z and are far from the physical
region and therefore are not be discussed any more.
Figure 6 shows the normalized spectrum f for pole pairs,
2–2! and 3–3!. As expected, contributions from 2! and 3!

are peaked at the D̄D! threshold, and their contributions are
much larger than those of 2 and 3.
The above argument shows that the HAL QCD results

indeed imply the existence of S-matrix poles near the D̄D!

threshold. The contribution from the near-threshold poles
shows narrow structures at the D̄D! threshold and is most
likely the source of the observed Zð3900Þ enhancement.

B. Separable potential model

In this section, we analyze the scattering amplitude of a
simple nonrelativistic two-channel scattering. We show an

explicit case that a pole located on the [tb] sheet plays an
essential role for the enhancement of the scattering ampli-
tude at the upper threshold. The scattering energy, E, is
expressed in terms of on-shell momentum pi (i ¼ 1, 2) as

E ¼ p2
i

2μi
þ Δi; ð8Þ

where μi and Δi are the reduced mass and sum of the
masses of two particles, respectively. We take Δ2 > Δ1.
The interaction, Vij, is given by a separable form,

Vijðp0; pÞ ¼ gðp0ÞvijgðpÞ; ð9Þ

with a monopole form factor, gðpÞ ¼ β2=ðβ2 þ p2Þ.
We keep only the off-diagonal potential, i.e., v11 ¼

v22 ¼ 0 and v12 ¼ v, which is motivated from the effective
potential for the πJ=ψ − ρηc −DD̄! system given by the

FIG. 6. “Normalized” pole-pair contributions, fðz; zp;ϕpÞ, from poles 2, 2! and 3, 3! for the cases where the phase of the residue is
ϕp ¼ 0 (above left, above right) and ϕp ¼ −π=2 (below left, below right).

TABLE II. The uniformization variables, zp, and the scaled energy, ep, for S-matrix poles, 1–5 (Imep < 0), given in Ref. [20], and for
their conjugate poles, 1!–5! (Imep > 0), not given in Ref. [20]. Also shown is the sheet on which each pole is positioned.

1; 1! 2; 2! 3; 3! 4; 4! 5; 5!

zp &1.11 − 0.95i ∓0.74 − 0.53i ∓0.86 − 0.45i ∓0.65 − 0.54i &0.79 − 1.34i
ep 0.60 ∓ 0.41i 0.66 ∓ 0.09i 0.79 ∓ 0.02i 0.60 ∓ 0.17i 0.16 ∓ 0.44i
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Pole # 1 Pole # 2 Pole # 3
I 0.096 � 0.2238 ± 0.003 ± 0.0028 0.34 � 0.348 ± 0.07 ± 0.088 0.00004 + 0.18 ± 0.00003 ± 0.18
⌘? [GeV] 1.530 � 0.0058 ± 0.002 ± 0.0028 1.7 + 0.078 ± 0.1 ± 0.088 1.3 � 0.00018 ± 0.4 ± 0.00048
AI? [GeV�1] �1.0 + 0.48 ± 0.4 ± 0.38 �20 � 508 ± 60 ± 208 �90000 + 508 ± 50000 ± 208
A⌘? �1.1 + 0.48 ± 0.4 ± 0.48 60 � 208 ± 20 ± 708 �600 + 300008 ± 500 ± 200008

Pole # 1 Pole # 2 Pole # 3 Pole # 4
I 0.25 � 0.238 ± 0.01 ± 0.028 0.253 � 0.0458 ± 0.006 ± 0.0068 0.30 + 0.038 ± 0.02 ± 0.028 0.000 + 0.348 ± 0.005 ± 0.038
⌘? [GeV] 4.319 � 0.0018 ± 0.004 ± 0.0028 4.442 � 0.0028 ± 0.004 ± 0.0048 4.47 + 0.038 ± 0.02 ± 0.028 3.5 + 0.018 ± 0.5 ± 0.088
AI? [GeV�1] �2 � 58 ± 4 ± 48 0.3 � 0.68 ± 0.8 ± 0.98 50 � 208 ± 20 ± 108 �80 + 1208 ± 2000 ± 208
A⌘? 0.8 � 0.88 ± 0.8 ± 0.88 �0.4 � 0.38 ± 0.6 ± 0.68 60 + 208 ± 20 ± 208 �2100 � 10008 ± 600 ± 300008
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The results from the separable potential model support
our argument that the Zð3900Þ enhancement can naturally
be explained by the existence of poles near the D̄D#

threshold on the complex energy sheet which are usually
considered to be physically irrelevant.

V. SUMMARY AND CONCLUSIONS

In this paper, we exhibited how S-matrix poles manifest
themselves as the physical spectrum near the upper thresh-
old, from the viewpoint of the uniformized Mittag-Leffler
expansion, and argued that the enhancement of Zð3900Þ
very close to the D̄D# threshold most likely originates from
a pole (a couple of poles) near the D̄D# threshold.
After introducing the two-channel uniformized plane and

the uniformized Mittag-Leffler expansion, we numerically
demonstrated how the spectrum changes as a S-matrix pole
moves near the upper threshold across the borders of
complex-energy Riemann sheets. As a pole moves from
the [bt] sheet through the [tb] sheet to the [bb] sheet, the
contribution from the individual pole continuously transi-
tioned, peaking at the energy of the physical point closest
on the uniformized plane, with the width given by the
corresponding distance. The continuous behavior of the
transition implies that the identity on which sheet a pole is
located is not essentially important. The fundamental
identities which characterize the contribution of a pole is
given by the residue of the pole and the distance of the pole
to the physical region on the uniformized plane. We also
observed that the complex pole energy does not have the
usual meaning of the resonance when the pole is close to
the upper threshold. Neither the real part represents the
peak energy, nor the imaginary part represents the half
width. For example, the complex energy of a pole on the
[tb] sheet in the near-threshold region of the upper thresh-
old has a positive imaginary part.

Subsequently, we argued that Zð3900Þ can be naturally
understood as a contribution of a set of poles in the domain
near the D̄D# threshold. We showed that the HAL QCD
results [20,21] combined with the symmetry argument of
the S matrix indicate the existence of the S-matrix poles
near the D̄D# threshold, whose normalized contributions
have narrow structures at the threshold. We further dem-
onstrated such poles indeed exhibit a dominant enhance-
ment in the spectrum by means of a separable two-channel
nonrelativistic potential model with a monopolar form
factor.
To further solidify our claim, it would be very mean-

ingful to develop a parametrization which enables us to
globally (entirely) unformize the three-channel S matrix.
Also, we would like to fully exploit our uniformized
Mittag-Leffler method to actual experimental observations
of Zð3900Þ, such as the invariant-mass distributions of
Y → ππJ=ψ measured by Belle and BESIII Collaborations
[31–35]. Last but not least, we have not fully understood
the nature of such a pole which is possibly responsible for
the Zð3900Þ enhancement and is located near the D̄D#

threshold on the complex energy sheet usually considered
to be physically irrelevant. It is not clear how we should
interpret such a pole because it would have a complex
energy with a positive imaginary part and increases in time,
while a resonance pole has a complex energy with a
negative imaginary part and decreases in time. It would
be our future challenge to clarify the nature of such a pole,
which would extend our understanding of the resonant
phenomena, in general.
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FIG. 7. jF 11j2(left) and Im½F 11%(right) when α ¼ γ ¼ 1.7,
ffiffiffiffiffiffiffiffiffiffiffiffi
μ1=μ2

p
¼ 0.606. e is a dimensionless parameter given by

e ¼ ðE − Δ1Þ=ðΔ2 − Δ1Þ. Individual contributions of poles zi and their conjugate pairs are shown by solid and dashed curves
(red/blue), respectively.
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Enhanced ”threshold cusp” structure at �̄�𝐷∗ threshold from poles 2∗, 3∗
(pole on [𝑡𝑏]+)
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RS of the 3-channel S-matrix: 2-body, RH cuts and poles

• 23=8-sheeted √𝑠-plane [ttt], [btt], [tbt], [bbt], [ttb], [bbb], [tbb], [btb]

e.g. [𝑡𝑡𝑏]+ means 𝐼𝑚𝑞1 > 0, 𝐼𝑚𝑞2 > 0, 𝐼𝑚𝑞3 < 0 and 𝐼𝑚√𝑠 > 0

Re
√

s Re
√

s Re
√

s Re
√

s

Im
√

s Im
√

s Im
√

s Im
√

s

Re
√

s Re
√

s Re
√

s Re
√

s

Im
√

s Im
√

s Im
√

s Im
√

s

th1 th2 th3
ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε2 ε3

ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε2 ε3 ε1 ε2 ε3

0 0 0 0

0 0 0 0

[ttt]+

[ttt]−

[btt]+

[btt]−

[tbt]+

[tbt]−

[bbt]+

[bbt]−

[ttb]+

[ttb]−

[btb]+

[btb]−

[tbb]+

[tbb]−

[bbb]+

[bbb]−



Analytic Structure of the RS of 3-channeled S-matrix

23/38

2-sheeted z12-plane (z-plane using channel mass 𝜖1, 𝜖2)

𝑞1 =
Δ12
2
[𝑧12 + 1/𝑧12], 𝑞2 =

Δ12
2
[𝑧12 − 1/𝑧12], 𝑞3 =

Δ12
2𝑧12

√(1 − 𝑧212𝛾2)(1 − 𝑧
2
12/𝛾2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

sq.root cut 𝑧12=±𝛾,±1/𝛾
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W.Y. O.M. T.S. arXiv:2203.17069 [hep-ph], Fig.1 (楕円積分と楕円関数おとぎの国の歩き方)

3-channel S-matrix has the structure of a Torus, fundamentally different from

the 2-channel case (Riemann Sphere)!

H. Cohn, Conformal mapping on Riemann surfaces (Courier Corporation, 2014)

H. A. Weidenmüller Ann. Phys. (N.Y.) 28, 60 (1964)

R. G. Newton, Scattering Theory of Waves and Particles (Springer, 1982)
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W. Yamada, O. Morimatsu, T. Sato, Phys. Rev. Lett. 129, 192001 (2022)
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Double Periodicity

Naive pole expansion + 1st, 2nd subtraction terms

𝐴(𝑧) = ∑
𝑧𝑖∈Λ∗

[
𝑟𝑖

𝑧 − 𝑧𝑖
+ ∑

𝑚,𝑛≠0

𝑟𝑖
𝑧 − 𝑧𝑖 − Ω𝑚𝑛

] + (subtractions)

Λ∗ ∶ fundamental period parallelogram, Ω𝑚𝑛 ∶ lattice points

= 𝐶0 + 𝐶1𝑧 + ∑
𝑧𝑖∈Λ∗

𝑟𝑖 𝜁 (𝑧 − 𝑧𝑖)

Weierstrass Zeta function

𝜁 (𝑧) = 1
𝑧
+ ∑
𝑚,𝑛≠0

[ 1
𝑧 − Ω𝑚𝑛

+ 1
Ω𝑚𝑛

+ 𝑧
Ω2𝑚𝑛

] = 1
𝑧
+ ∑
𝑚,𝑛≠0

[ 𝑧2
(𝑧 − Ω𝑚𝑛) Ω2𝑚𝑛

]

• Boundary condition: 𝐴 → 0 at infinite energy

𝐶0 = − ∑
𝑧𝑖∈Λ∗

𝑟𝑖 𝜁 (−𝑧𝑖)

Re z

Im z

0

fundamental period

physical domain

Mittag-Leffler Expansion under the Torus representation

𝐴(𝑧) = ∑
𝑧𝑖∈Λ∗

𝑟𝑖 [𝜁 (𝑧 − 𝑧𝑖) + 𝜁 (𝑧𝑖)]

pole term

, ∑
𝑧𝑖∈Λ∗

𝑟𝑖 =
1
2𝜋𝑖 ∮𝜕Λ∗

𝑑𝑧 𝐴(𝑧) = 0
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Mittag-Leffler Expansion on the Torus with periods (1, 𝜏)

𝐴(𝑧) = ∑
𝑧𝑖∈Λ∗

𝑟𝑖 [𝜁 (𝑧 − 𝑧𝑖; 𝜏) + 𝜁 (𝑧𝑖; 𝜏)]

pole term, 𝜏 dependence?

Torus does not have one-to-one correspondence with 𝜏
modular group SL(2,Z) induces an equivalent class of 𝜏 representing the same torus

2
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Model: ΛΛ-𝑁Ξ-ΣΣ [𝐼 = 0, 𝐽𝑃 = 0+, Flavor singlet]
D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl.Phys. B478 (1996)

Y. Yamaguchi, T. Hyodo, Phys. Rev. C 94, 065207 (2016)
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Model: ΛΛ-𝑁Ξ-ΣΣ [𝐼 = 0, 𝐽𝑃 = 0+, Flavor singlet]
D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl.Phys. B478 (1996)
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Model: ΛΛ-𝑁Ξ-ΣΣ [𝐼 = 0, 𝐽𝑃 = 0+, Flavor singlet]
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Model: ΛΛ-𝑁Ξ-ΣΣ [𝐼 = 0, 𝐽𝑃 = 0+, Flavor singlet]
D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl.Phys. B478 (1996)

Y. Yamaguchi, T. Hyodo, Phys. Rev. C 94, 065207 (2016)
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Pole Trajectory of Pole 1 & Pole 2 on the ΛΛ-𝑁Ξ-ΣΣ Torus
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Smooth transition of pole position and peak structure:

Especially a smooth transition from a resonance pole on [𝑏𝑡𝑡]− to pole with
positive imaginary complex energy on [𝑡𝑏𝑡]+ manifested as a ’cusp-like’ shape

’Peak position’ and ’width’: closest physical point, distance on torus ≠ Re 𝐸𝑝, Im 𝐸𝑝
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Chiral-Unitary Model LO:

𝐼 = 1 𝜋Λ-𝜋Σ-�̄�𝑁
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Ξ+𝑐 → Ξ−𝜋+𝜋+ Belle, M. Sumihama et. al., PRL 122, 072501 (2019)

Torus of 3-channel system: 𝜋+Ξ−, �̄�0Λ, �̄�Σ
3-pole Mittag-Leffler Expansion
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1Department of Physics, Faculty of Science, University of Tokyo, 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033, Japan
2Theory Center, Institute of Particle and Nuclear Studies (IPNS),

High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 205-0801, Japan

(Dated: October 31, 2022)

4? = (B? � 42

1
)/(42

2
� 42

1
),

I? = 41/2

? + (4? � 1)1/2.

41 = 3508 MeV (��/#), 42 = 3959 MeV (⇡̄⇡⇤)

Pole # 1 Pole # 2 Pole # 3

I 0.096 � 0.2238 ± 0.003 ± 0.0028 0.34 � 0.348 ± 0.07 ± 0.088 0.00004 + 0.18 ± 0.00003 ± 0.18
⌘? [GeV] 1.530 � 0.0058 ± 0.002 ± 0.0028 1.7 + 0.078 ± 0.1 ± 0.088 1.3 � 0.00018 ± 0.4 ± 0.00048
AI? [GeV

�1
] �1.0 + 0.48 ± 0.4 ± 0.38 �20 � 508 ± 60 ± 208 �90000 + 508 ± 50000 ± 208

A⌘? �1.1 + 0.48 ± 0.4 ± 0.48 60 � 208 ± 20 ± 708 �600 + 300008 ± 500 ± 200008

𝐴(𝑧) ≈
3

∑
𝑛=1

𝑟𝑛 [(𝜁 (𝑧 − 𝑧𝑛) + 𝜁 (𝑧𝑛))] + 𝑟
∗
𝑛 [𝜁 (𝑧 − 𝑧

∗
𝑛) − 𝜁 (𝑧

∗
𝑛)]
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Λ0𝑏 → 𝑝𝐽/𝜓𝐾− LHCb, R. Aaij et al. Phys. Rev. Lett. 122, 222001 (2019)
Torus of 3-channel system: 𝑝𝐽/𝜓, Σ+𝑐�̄�

0, Σ+𝑐�̄�
∗0

4-pole Mittag-Leffler Expansion
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Wren A. Yamada
1, 2

1Department of Physics, Faculty of Science, University of Tokyo, 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033, Japan
2Theory Center, Institute of Particle and Nuclear Studies (IPNS),

High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 205-0801, Japan

(Dated: October 31, 2022)

4? = (B? � 42

1
)/(42

2
� 42

1
),

I? = 41/2

? + (4? � 1)1/2.

41 = 3508 MeV (��/#), 42 = 3959 MeV (⇡̄⇡⇤)

Pole # 1 Pole # 2 Pole # 3 Pole # 4

I 0.25 � 0.238 ± 0.01 ± 0.028 0.253 � 0.0458 ± 0.006 ± 0.0068 0.30 + 0.038 ± 0.02 ± 0.028 0.000 + 0.348 ± 0.005 ± 0.038
⌘? [GeV] 4.319 � 0.0018 ± 0.004 ± 0.0028 4.442 � 0.0028 ± 0.004 ± 0.0048 4.47 + 0.038 ± 0.02 ± 0.028 3.5 + 0.018 ± 0.5 ± 0.088
AI? [GeV

�1
] �2 � 58 ± 4 ± 48 0.3 � 0.68 ± 0.8 ± 0.98 50 � 208 ± 20 ± 108 �80 + 1208 ± 2000 ± 208

A⌘? 0.8 � 0.88 ± 0.8 ± 0.88 �0.4 � 0.38 ± 0.6 ± 0.68 60 + 208 ± 20 ± 208 �2100 � 10008 ± 600 ± 300008

𝐴(𝑧) ≈
4

∑
𝑛=1

𝑟𝑛 [(𝜁 (𝑧 − 𝑧𝑛) + 𝜁 (𝑧𝑛))] + 𝑟
∗
𝑛 [𝜁 (𝑧 − 𝑧

∗
𝑛) − 𝜁 (𝑧

∗
𝑛)]
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Λ0𝑏 → 𝑝𝐽/𝜓𝐾− LHCb, R. Aaij et al. Phys. Rev. Lett. 122, 222001 (2019)
Torus of 3-channel system: 𝑝𝐽/𝜓, Σ+𝑐�̄�

0, Σ+𝑐�̄�
∗0

4-pole Mittag-Leffler Expansion
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? + (4? � 1)1/2.

41 = 3508 MeV (��/#), 42 = 3959 MeV (⇡̄⇡⇤)

Pole # 1 Pole # 2 Pole # 3 Pole # 4

I 0.25 � 0.238 ± 0.01 ± 0.028 0.253 � 0.0458 ± 0.006 ± 0.0068 0.30 + 0.038 ± 0.02 ± 0.028 0.000 + 0.348 ± 0.005 ± 0.038
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Non-trivial analytic structure of S-matrix in energy near the thresholds

Breit-Wigner does not reflect the proper structure

Uniformization: clarification pole position↔ spectrum

2-channel S-matrix: Sphere, 3-channel S-matrix: Torus

Mittag-Leffler Expansion

Pole Expansion accounting the non-trivial analytic structure of S-matrix

For 3-channel case, double-periodicity of torus has to be considered

Line shapes: Enhanced structure in spectrum→ Existence of nearby poles

• Smooth transition of peak structure (under smooth transition of pole)
• ’Resonances’ ([𝑏𝑡(𝑡)]−,[𝑏𝑏(𝑡)]−,[𝑏𝑏(𝑏)]−),
’Cusp’-shaped enhancements ([𝑡𝑏(𝑡)]+,[(𝑡)𝑡𝑏]+)

• Peak position ≈ closest physical point on uniformized plane, ≠ Re 𝐸𝑝𝑜𝑙𝑒

Application of Mittag-Leffler Expansion:

• Λ (1405): Primary pole on [𝑏𝑡]-sheet, 𝐸𝑝 > 1420 > 1405MeV

• 𝑍 (3900): Possible contribution from poles on [(𝑡)𝑡𝑏]+
• 3-channel Mittag-Leffler Expansion to Ξ, 𝑃𝑐
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WREN A. YAMADA AND OSAMU MORIMATSU PHYSICAL REVIEW C 103, 045201 (2021)

FIG. 4. Results for the invariant-mass distributions of π+"− in the reaction γ p → K+π" in nine bins of center-of-mass energy W . The
(blue) dots with bars are the experimental data. The (orange) bands represent the 2σ -confidence interval of the fit by the uniformized Mittag-
Leffler expansion with m = 3. The (green) dashed, (red) dot-dashed, and (purple) dotted lines represent the contributions from individual
resonant-pole pairs of 1 + 1∗, 2 + 2∗, and 3 + 3∗, respectively.

where Mi and mi are the masses of the two particles in chan-
nels i = 1 and 2, respectively. The four sheets in the

√
s plane

can be uniquely labeled by the sign of the imaginary part of
q1 and q2, given by

qi =
√

s − ε2
i , (11)

which has a one-to-one correspondence with channel mo-
menta. In this paper we label the four sheets by (σ (q1)σ (q2))
where

σ (qi ) = sgn(Im qi ). (12)

The physical sheet corresponds to sheet (++).
By the parametrization z [6],

z = 1 +
√

u
1 −

√
u
,

where

u = q1 − &

q1 + &
and & =

√
ε2

2 − ε2
1 , (13)

the four-sheeted Riemann surface can be uniformized into
a single complex plane so that S (z) is meromorphic. The
correspondence between the

√
s plane and z plane is shown

in Fig. 3. The two thresholds,
√

s = ε1 and
√

s = ε2 are
transformed to points on the unit circle z = i and z = 1, re-
spectively. The imaginary axis above i, the unit circle between
i and 1, and the real axis above 1 correspond to the physically
accessible region of

√
s < ε1, ε1 <

√
s < ε2 and

√
s < ε2,

respectively.
The contribution of a single resonant-pole pair An is given

in the vicinity of
√

s = ε1 as

ImAn(z) =
{

0 (
√

s < ε1)
−Im 2cn

(zn−i)2
k1
&

+ O
(
k2

1

)
(
√

s > ε1), (14)

and in the vicinity of
√

s = ε2 as

ImAn(z) =





Im 2cn

1−z2
n
− Re 4cnzn

(1−z2
n )2

k̃2
&

+ O
(
k̃2

2

)
(
√

s < ε2)

Im 2cn
1−z2

n
− Im 2cn(1+z2

n )
(1−z2

n )2
k2
&

+ O
(
k2

2

)
(
√

s > ε2),

(15)
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APPLICATION OF THE UNIFORMIZED MITTAG-LEFFLER … PHYSICAL REVIEW C 103, 045201 (2021)

FIG. 5. Results for the invariant-mass distributions of π−"+. Details are the same as in Fig. 4.

where k1 and k2 are the momenta in channel 1 and 2, re-
spectively, and k̃2 is defined by k2 = ik̃2. Equations (14) and
(15) describe the proper threshold behaviors. Therefore, we
will always take into account pairs of poles together in the
uniformized Mittag-Leffler expansion. It should be noted,
however, that the conjugate poles do not affect the structure of
resonances well above the lowest threshold, because they are
more distant as the energy becomes higher above the lowest
threshold.

If a pole is located close to the physical region and
sufficiently away from the threshold, its contribution is
approximately given by Eq. (1) with a complex residue
as

Im
cn

z − zn
≈ Im

c̃n√
s −

√
sn

= A cos θ
$n/2

(
√

s − εn)2 + $2
n/4

+ A sin θ

√
s − εn

(
√

s − εn)2 + $2
n/4

, (16)

where
√

sn = εn − i$n/2 and c̃n = cn[dz/d
√

s]−1√
s=

√
sn

= Aeiθ

are, respectively, the position and residue of the pole in the
parametrization,

√
s, corresponding to zn. The standard Breit-

Wigner form corresponds to the particular case of θ = 0.
Note that the approximation in the first line of Eq. (16) only
holds for narrow resonances distant from the threshold. On
some local coordinate system, the mapping between

√
s and

z is a conformal map, thus preserving the local geometric
structure, meaning when |z − zn| is small and away from
critical points, z = i and 1, 1/(z − zn) ≈ α/(

√
s −

√
sn). In

the neighborhood of the thresholds, or in the region of large
$, the mapping between

√
s and z is warped significantly, so

that the approximation breaks down.

III. APPLICATION TO THE EXPERIMENTAL
SPECTRUM OF !(1405)

We now apply our method to the experimental spectrum
of '(1405), regarding '(1405) as a resonance in the coupled
I = 0 two channels, π" and K̄N .

045201-5
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APPLICATION OF THE UNIFORMIZED MITTAG-LEFFLER … PHYSICAL REVIEW C 103, 045201 (2021)

TABLE II. Results for the residues of the invariant-mass distributions of π+"− in units of µb/GeV in nine bins of center-of-mass energy
W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV) Pole 1 Pole 2 Pole 3

1.95–2.05 −0.3486 + 0.3026i ± 0.0154 ± 0.0149i 0.2487 − 0.122i ± 0.053 ± 0.0342i −0.0016 − 0.0029i ± 0.0013 ± 0.0014i
2.05–2.15 −0.3809 + 0.3245i ± 0.0156 ± 0.0135i 0.1451 − 0.1877i ± 0.0442 ± 0.0225i −0.0175 − 0.0081i ± 0.0034 ± 0.0023i
2.15–2.25 −0.2662 + 0.1989i ± 0.0121 ± 0.0096i 0.0294 − 0.0919i ± 0.028 ± 0.0183i −0.0108 − 0.0133i ± 0.0029 ± 0.0021i
2.25–2.35 −0.2539 + 0.208i ± 0.013 ± 0.0106i 0.0165 − 0.0339i ± 0.0318 ± 0.0227i 0.0014 − 0.0122i ± 0.0023 ± 0.0021i
2.35–2.45 −0.2016 + 0.2142i ± 0.0131 ± 0.0104i 0.0864 − 0.0442i ± 0.0306 ± 0.0189i −0.004 − 0.0105i ± 0.0021 ± 0.0019i
2.45–2.55 −0.1595 + 0.1369i ± 0.0097 ± 0.008i 0.0423 − 0.0179i ± 0.0219 ± 0.0151i −0.0038 − 0.0091i ± 0.0018 ± 0.0017i
2.55–2.65 −0.1072 + 0.0925i ± 0.008 ± 0.006i 0.025 − 0.0066i ± 0.0169 ± 0.0119i −0.0043 − 0.0065i ± 0.0016 ± 0.0014i
2.65–2.75 −0.0891 + 0.057i ± 0.0065 ± 0.0046i 0.0189 + 0.0133i ± 0.0139 ± 0.01i −0.0039 − 0.0062i ± 0.0014 ± 0.0012i
2.75–2.85 −0.0657 + 0.0466i ± 0.0056 ± 0.0042i 0.0161 − 0.0066i ± 0.0115 ± 0.008i −0.0053 − 0.0051i ± 0.0013 ± 0.0011i

TABLE III. Results for the residues of the invariant-mass distributions of π−"+ in units of µb/GeV in nine bins of center-of-mass energy
W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV) Pole 1 Pole 2 Pole 3

1.95–2.05 −0.2247 + 0.542i ± 0.0319 ± 0.0262i 0.358 − 0.2978i ± 0.0864 ± 0.0491i −0.0013 − 0.0038i ± 0.0017 ± 0.0017i
2.05–2.15 −0.1119 + 0.7353i ± 0.035 ± 0.0301i 0.0861 − 0.542i ± 0.0823 ± 0.0456i −0.0165 − 0.0155i ± 0.0035 ± 0.0033i
2.15–2.25 0.1962 + 0.4702i ± 0.02 ± 0.0162i 0.2154 − 0.1012i ± 0.0524 ± 0.0325i 0.002 − 0.0171i ± 0.0027 ± 0.0026i
2.25–2.35 0.0662 + 0.3112i ± 0.0144 ± 0.0129i 0.1313 − 0.0568i ± 0.0374 ± 0.0233i 0.0081 + 0.001i ± 0.0014 ± 0.002i
2.35–2.45 −0.0017 + 0.3091i ± 0.0116 ± 0.0116i 0.2839 + 0.0335i ± 0.0461 ± 0.0327i 0.0028 − 0.0026i ± 0.0018 ± 0.0016i
2.45–2.55 −0.0119 + 0.2237i ± 0.009 ± 0.0088i 0.2132 + 0.017i ± 0.0346 ± 0.0236i 0.0004 − 0.006i ± 0.0014 ± 0.0012i
2.55–2.65 −0.0189 + 0.1726i ± 0.0075 ± 0.0073i 0.1377 − 0.0008i ± 0.0248 ± 0.0162i −0.0006 − 0.0038i ± 0.001 ± 0.0011i
2.65–2.75 −0.0123 + 0.1263i ± 0.0062 ± 0.0055i 0.1136 − 0.0044i ± 0.02 ± 0.0131i −0.0029 − 0.0035i ± 0.001 ± 0.0009i
2.75–2.85 −0.0173 + 0.0932i ± 0.0055 ± 0.005i 0.0859 − 0.0121i ± 0.016 ± 0.0096i −0.0021 − 0.0028i ± 0.0009 ± 0.0007i

TABLE IV. Results for the residues of the invariant-mass distributions of π0"0 in units of µb/GeV in nine bins of center-of-mass energy
W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV) Pole 1 Pole 2 Pole 3

1.95–2.05 −0.6515 + 0.3471i ± 0.2256 ± 0.1211i 0.5316 − 1.2492i ± 0.7596 ± 1.3581i 1.3537 − 0.6183i ± 2.7107 ± 1.0427i
2.05–2.15 −0.3179 + 0.5296i ± 0.0374 ± 0.06i −0.3174 − 0.6043i ± 0.1764 ± 0.1197i −0.011 + 0.0019i ± 0.0104 ± 0.0121i
2.15–2.25 −0.1085 + 0.3535i ± 0.0209 ± 0.0333i −0.0763 + 0.0737i ± 0.1051 ± 0.0997i −0.0015 − 0.009i ± 0.0108 ± 0.0099i
2.25–2.35 −0.053 + 0.2798i ± 0.0154 ± 0.0245i 0.0799 + 0.2387i ± 0.0854 ± 0.0871i 0.0081 − 0.0087i ± 0.0086 ± 0.0082i
2.35–2.45 0.0027 + 0.2895i ± 0.0139 ± 0.0227i 0.1853 + 0.2406i ± 0.0828 ± 0.0885i 0.0052 − 0.001i ± 0.0079 ± 0.0073i
2.45–2.55 0.0223 + 0.2323i ± 0.0097 ± 0.0164i 0.1871 + 0.2054i ± 0.0618 ± 0.0691i −0.0038 − 0.0032i ± 0.0061 ± 0.0063i
2.55–2.65 0.0088 + 0.1641i ± 0.0084 ± 0.0141i 0.1101 + 0.1044i ± 0.0479 ± 0.0491i −0.0051 − 0.0098i ± 0.0054 ± 0.0042i
2.65–2.75 −0.0018 + 0.1221i ± 0.0076 ± 0.0126i 0.0883 + 0.1107i ± 0.0414 ± 0.0428i −0.0026 − 0.0058i ± 0.0047 ± 0.0038i
2.75–2.85 0.0089 + 0.094i ± 0.0058 ± 0.009i 0.0417 + 0.0439i ± 0.0317 ± 0.0294i 0.0018 − 0.0052i ± 0.0025 ± 0.0032i

TABLE V. Results for the residues of the cross sections K− p → K− p, K̄0n, π+"−, π−"+ in units µb/GeV2 by the uniformized Mittag-
Leffler expansion with m = 3.

Pole 1 Pole 2 Pole 3

K− p → K− p −5579 + 21810i ± 28869 ± 8950i 6572 − 5272i ± 6311 ± 4234i −99.33 + 32.89i ± 39.09 ± 44.88i
K− p → K

0
n 76090 − 9251i ± 25010 ± 6306i −1596 + 6936i ± 3447 ± 3629i −188.2 + 64.44i ± 13.5 ± 15.32i

K− p → π+"− 18960 − 96.75i ± 6251 ± 1890i −125.0 + 677.6i ± 1223.3 ± 936.0i −105.7 + 35.68i ± 7.2 ± 8.39i
K− p → π−"+ −4998 + 3449i ± 5546 ± 1850i 82.03 + 26.41i ± 1316.93 ± 837.59i −120.9 + 26.07i ± 8.7 ± 9.86i
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TABLE II. Results for the residues of the invariant-mass distributions of π+"− in units of µb/GeV in nine bins of center-of-mass energy
W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV) Pole 1 Pole 2 Pole 3

1.95–2.05 −0.3486 + 0.3026i ± 0.0154 ± 0.0149i 0.2487 − 0.122i ± 0.053 ± 0.0342i −0.0016 − 0.0029i ± 0.0013 ± 0.0014i
2.05–2.15 −0.3809 + 0.3245i ± 0.0156 ± 0.0135i 0.1451 − 0.1877i ± 0.0442 ± 0.0225i −0.0175 − 0.0081i ± 0.0034 ± 0.0023i
2.15–2.25 −0.2662 + 0.1989i ± 0.0121 ± 0.0096i 0.0294 − 0.0919i ± 0.028 ± 0.0183i −0.0108 − 0.0133i ± 0.0029 ± 0.0021i
2.25–2.35 −0.2539 + 0.208i ± 0.013 ± 0.0106i 0.0165 − 0.0339i ± 0.0318 ± 0.0227i 0.0014 − 0.0122i ± 0.0023 ± 0.0021i
2.35–2.45 −0.2016 + 0.2142i ± 0.0131 ± 0.0104i 0.0864 − 0.0442i ± 0.0306 ± 0.0189i −0.004 − 0.0105i ± 0.0021 ± 0.0019i
2.45–2.55 −0.1595 + 0.1369i ± 0.0097 ± 0.008i 0.0423 − 0.0179i ± 0.0219 ± 0.0151i −0.0038 − 0.0091i ± 0.0018 ± 0.0017i
2.55–2.65 −0.1072 + 0.0925i ± 0.008 ± 0.006i 0.025 − 0.0066i ± 0.0169 ± 0.0119i −0.0043 − 0.0065i ± 0.0016 ± 0.0014i
2.65–2.75 −0.0891 + 0.057i ± 0.0065 ± 0.0046i 0.0189 + 0.0133i ± 0.0139 ± 0.01i −0.0039 − 0.0062i ± 0.0014 ± 0.0012i
2.75–2.85 −0.0657 + 0.0466i ± 0.0056 ± 0.0042i 0.0161 − 0.0066i ± 0.0115 ± 0.008i −0.0053 − 0.0051i ± 0.0013 ± 0.0011i

TABLE III. Results for the residues of the invariant-mass distributions of π−"+ in units of µb/GeV in nine bins of center-of-mass energy
W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV) Pole 1 Pole 2 Pole 3

1.95–2.05 −0.2247 + 0.542i ± 0.0319 ± 0.0262i 0.358 − 0.2978i ± 0.0864 ± 0.0491i −0.0013 − 0.0038i ± 0.0017 ± 0.0017i
2.05–2.15 −0.1119 + 0.7353i ± 0.035 ± 0.0301i 0.0861 − 0.542i ± 0.0823 ± 0.0456i −0.0165 − 0.0155i ± 0.0035 ± 0.0033i
2.15–2.25 0.1962 + 0.4702i ± 0.02 ± 0.0162i 0.2154 − 0.1012i ± 0.0524 ± 0.0325i 0.002 − 0.0171i ± 0.0027 ± 0.0026i
2.25–2.35 0.0662 + 0.3112i ± 0.0144 ± 0.0129i 0.1313 − 0.0568i ± 0.0374 ± 0.0233i 0.0081 + 0.001i ± 0.0014 ± 0.002i
2.35–2.45 −0.0017 + 0.3091i ± 0.0116 ± 0.0116i 0.2839 + 0.0335i ± 0.0461 ± 0.0327i 0.0028 − 0.0026i ± 0.0018 ± 0.0016i
2.45–2.55 −0.0119 + 0.2237i ± 0.009 ± 0.0088i 0.2132 + 0.017i ± 0.0346 ± 0.0236i 0.0004 − 0.006i ± 0.0014 ± 0.0012i
2.55–2.65 −0.0189 + 0.1726i ± 0.0075 ± 0.0073i 0.1377 − 0.0008i ± 0.0248 ± 0.0162i −0.0006 − 0.0038i ± 0.001 ± 0.0011i
2.65–2.75 −0.0123 + 0.1263i ± 0.0062 ± 0.0055i 0.1136 − 0.0044i ± 0.02 ± 0.0131i −0.0029 − 0.0035i ± 0.001 ± 0.0009i
2.75–2.85 −0.0173 + 0.0932i ± 0.0055 ± 0.005i 0.0859 − 0.0121i ± 0.016 ± 0.0096i −0.0021 − 0.0028i ± 0.0009 ± 0.0007i

TABLE IV. Results for the residues of the invariant-mass distributions of π0"0 in units of µb/GeV in nine bins of center-of-mass energy
W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV) Pole 1 Pole 2 Pole 3

1.95–2.05 −0.6515 + 0.3471i ± 0.2256 ± 0.1211i 0.5316 − 1.2492i ± 0.7596 ± 1.3581i 1.3537 − 0.6183i ± 2.7107 ± 1.0427i
2.05–2.15 −0.3179 + 0.5296i ± 0.0374 ± 0.06i −0.3174 − 0.6043i ± 0.1764 ± 0.1197i −0.011 + 0.0019i ± 0.0104 ± 0.0121i
2.15–2.25 −0.1085 + 0.3535i ± 0.0209 ± 0.0333i −0.0763 + 0.0737i ± 0.1051 ± 0.0997i −0.0015 − 0.009i ± 0.0108 ± 0.0099i
2.25–2.35 −0.053 + 0.2798i ± 0.0154 ± 0.0245i 0.0799 + 0.2387i ± 0.0854 ± 0.0871i 0.0081 − 0.0087i ± 0.0086 ± 0.0082i
2.35–2.45 0.0027 + 0.2895i ± 0.0139 ± 0.0227i 0.1853 + 0.2406i ± 0.0828 ± 0.0885i 0.0052 − 0.001i ± 0.0079 ± 0.0073i
2.45–2.55 0.0223 + 0.2323i ± 0.0097 ± 0.0164i 0.1871 + 0.2054i ± 0.0618 ± 0.0691i −0.0038 − 0.0032i ± 0.0061 ± 0.0063i
2.55–2.65 0.0088 + 0.1641i ± 0.0084 ± 0.0141i 0.1101 + 0.1044i ± 0.0479 ± 0.0491i −0.0051 − 0.0098i ± 0.0054 ± 0.0042i
2.65–2.75 −0.0018 + 0.1221i ± 0.0076 ± 0.0126i 0.0883 + 0.1107i ± 0.0414 ± 0.0428i −0.0026 − 0.0058i ± 0.0047 ± 0.0038i
2.75–2.85 0.0089 + 0.094i ± 0.0058 ± 0.009i 0.0417 + 0.0439i ± 0.0317 ± 0.0294i 0.0018 − 0.0052i ± 0.0025 ± 0.0032i

TABLE V. Results for the residues of the cross sections K− p → K− p, K̄0n, π+"−, π−"+ in units µb/GeV2 by the uniformized Mittag-
Leffler expansion with m = 3.

Pole 1 Pole 2 Pole 3

K− p → K− p −5579 + 21810i ± 28869 ± 8950i 6572 − 5272i ± 6311 ± 4234i −99.33 + 32.89i ± 39.09 ± 44.88i
K− p → K

0
n 76090 − 9251i ± 25010 ± 6306i −1596 + 6936i ± 3447 ± 3629i −188.2 + 64.44i ± 13.5 ± 15.32i

K− p → π+"− 18960 − 96.75i ± 6251 ± 1890i −125.0 + 677.6i ± 1223.3 ± 936.0i −105.7 + 35.68i ± 7.2 ± 8.39i
K− p → π−"+ −4998 + 3449i ± 5546 ± 1850i 82.03 + 26.41i ± 1316.93 ± 837.59i −120.9 + 26.07i ± 8.7 ± 9.86i
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TABLE II. Results for the residues of the invariant-mass distributions of π+"− in units of µb/GeV in nine bins of center-of-mass energy
W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV) Pole 1 Pole 2 Pole 3

1.95–2.05 −0.3486 + 0.3026i ± 0.0154 ± 0.0149i 0.2487 − 0.122i ± 0.053 ± 0.0342i −0.0016 − 0.0029i ± 0.0013 ± 0.0014i
2.05–2.15 −0.3809 + 0.3245i ± 0.0156 ± 0.0135i 0.1451 − 0.1877i ± 0.0442 ± 0.0225i −0.0175 − 0.0081i ± 0.0034 ± 0.0023i
2.15–2.25 −0.2662 + 0.1989i ± 0.0121 ± 0.0096i 0.0294 − 0.0919i ± 0.028 ± 0.0183i −0.0108 − 0.0133i ± 0.0029 ± 0.0021i
2.25–2.35 −0.2539 + 0.208i ± 0.013 ± 0.0106i 0.0165 − 0.0339i ± 0.0318 ± 0.0227i 0.0014 − 0.0122i ± 0.0023 ± 0.0021i
2.35–2.45 −0.2016 + 0.2142i ± 0.0131 ± 0.0104i 0.0864 − 0.0442i ± 0.0306 ± 0.0189i −0.004 − 0.0105i ± 0.0021 ± 0.0019i
2.45–2.55 −0.1595 + 0.1369i ± 0.0097 ± 0.008i 0.0423 − 0.0179i ± 0.0219 ± 0.0151i −0.0038 − 0.0091i ± 0.0018 ± 0.0017i
2.55–2.65 −0.1072 + 0.0925i ± 0.008 ± 0.006i 0.025 − 0.0066i ± 0.0169 ± 0.0119i −0.0043 − 0.0065i ± 0.0016 ± 0.0014i
2.65–2.75 −0.0891 + 0.057i ± 0.0065 ± 0.0046i 0.0189 + 0.0133i ± 0.0139 ± 0.01i −0.0039 − 0.0062i ± 0.0014 ± 0.0012i
2.75–2.85 −0.0657 + 0.0466i ± 0.0056 ± 0.0042i 0.0161 − 0.0066i ± 0.0115 ± 0.008i −0.0053 − 0.0051i ± 0.0013 ± 0.0011i

TABLE III. Results for the residues of the invariant-mass distributions of π−"+ in units of µb/GeV in nine bins of center-of-mass energy
W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV) Pole 1 Pole 2 Pole 3

1.95–2.05 −0.2247 + 0.542i ± 0.0319 ± 0.0262i 0.358 − 0.2978i ± 0.0864 ± 0.0491i −0.0013 − 0.0038i ± 0.0017 ± 0.0017i
2.05–2.15 −0.1119 + 0.7353i ± 0.035 ± 0.0301i 0.0861 − 0.542i ± 0.0823 ± 0.0456i −0.0165 − 0.0155i ± 0.0035 ± 0.0033i
2.15–2.25 0.1962 + 0.4702i ± 0.02 ± 0.0162i 0.2154 − 0.1012i ± 0.0524 ± 0.0325i 0.002 − 0.0171i ± 0.0027 ± 0.0026i
2.25–2.35 0.0662 + 0.3112i ± 0.0144 ± 0.0129i 0.1313 − 0.0568i ± 0.0374 ± 0.0233i 0.0081 + 0.001i ± 0.0014 ± 0.002i
2.35–2.45 −0.0017 + 0.3091i ± 0.0116 ± 0.0116i 0.2839 + 0.0335i ± 0.0461 ± 0.0327i 0.0028 − 0.0026i ± 0.0018 ± 0.0016i
2.45–2.55 −0.0119 + 0.2237i ± 0.009 ± 0.0088i 0.2132 + 0.017i ± 0.0346 ± 0.0236i 0.0004 − 0.006i ± 0.0014 ± 0.0012i
2.55–2.65 −0.0189 + 0.1726i ± 0.0075 ± 0.0073i 0.1377 − 0.0008i ± 0.0248 ± 0.0162i −0.0006 − 0.0038i ± 0.001 ± 0.0011i
2.65–2.75 −0.0123 + 0.1263i ± 0.0062 ± 0.0055i 0.1136 − 0.0044i ± 0.02 ± 0.0131i −0.0029 − 0.0035i ± 0.001 ± 0.0009i
2.75–2.85 −0.0173 + 0.0932i ± 0.0055 ± 0.005i 0.0859 − 0.0121i ± 0.016 ± 0.0096i −0.0021 − 0.0028i ± 0.0009 ± 0.0007i

TABLE IV. Results for the residues of the invariant-mass distributions of π0"0 in units of µb/GeV in nine bins of center-of-mass energy
W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV) Pole 1 Pole 2 Pole 3

1.95–2.05 −0.6515 + 0.3471i ± 0.2256 ± 0.1211i 0.5316 − 1.2492i ± 0.7596 ± 1.3581i 1.3537 − 0.6183i ± 2.7107 ± 1.0427i
2.05–2.15 −0.3179 + 0.5296i ± 0.0374 ± 0.06i −0.3174 − 0.6043i ± 0.1764 ± 0.1197i −0.011 + 0.0019i ± 0.0104 ± 0.0121i
2.15–2.25 −0.1085 + 0.3535i ± 0.0209 ± 0.0333i −0.0763 + 0.0737i ± 0.1051 ± 0.0997i −0.0015 − 0.009i ± 0.0108 ± 0.0099i
2.25–2.35 −0.053 + 0.2798i ± 0.0154 ± 0.0245i 0.0799 + 0.2387i ± 0.0854 ± 0.0871i 0.0081 − 0.0087i ± 0.0086 ± 0.0082i
2.35–2.45 0.0027 + 0.2895i ± 0.0139 ± 0.0227i 0.1853 + 0.2406i ± 0.0828 ± 0.0885i 0.0052 − 0.001i ± 0.0079 ± 0.0073i
2.45–2.55 0.0223 + 0.2323i ± 0.0097 ± 0.0164i 0.1871 + 0.2054i ± 0.0618 ± 0.0691i −0.0038 − 0.0032i ± 0.0061 ± 0.0063i
2.55–2.65 0.0088 + 0.1641i ± 0.0084 ± 0.0141i 0.1101 + 0.1044i ± 0.0479 ± 0.0491i −0.0051 − 0.0098i ± 0.0054 ± 0.0042i
2.65–2.75 −0.0018 + 0.1221i ± 0.0076 ± 0.0126i 0.0883 + 0.1107i ± 0.0414 ± 0.0428i −0.0026 − 0.0058i ± 0.0047 ± 0.0038i
2.75–2.85 0.0089 + 0.094i ± 0.0058 ± 0.009i 0.0417 + 0.0439i ± 0.0317 ± 0.0294i 0.0018 − 0.0052i ± 0.0025 ± 0.0032i

TABLE V. Results for the residues of the cross sections K− p → K− p, K̄0n, π+"−, π−"+ in units µb/GeV2 by the uniformized Mittag-
Leffler expansion with m = 3.

Pole 1 Pole 2 Pole 3

K− p → K− p −5579 + 21810i ± 28869 ± 8950i 6572 − 5272i ± 6311 ± 4234i −99.33 + 32.89i ± 39.09 ± 44.88i
K− p → K

0
n 76090 − 9251i ± 25010 ± 6306i −1596 + 6936i ± 3447 ± 3629i −188.2 + 64.44i ± 13.5 ± 15.32i

K− p → π+"− 18960 − 96.75i ± 6251 ± 1890i −125.0 + 677.6i ± 1223.3 ± 936.0i −105.7 + 35.68i ± 7.2 ± 8.39i
K− p → π−"+ −4998 + 3449i ± 5546 ± 1850i 82.03 + 26.41i ± 1316.93 ± 837.59i −120.9 + 26.07i ± 8.7 ± 9.86i
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𝜋|𝑇𝑋|
2 = ∑

𝐼𝐽
⟨𝜙| 𝐹†𝐼 𝐺

†
𝐼 (𝐺−1𝐼0 )

† |𝑋⟩ Im 𝐺𝑋0 ⟨𝑋| 𝐺
−1
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𝐺 ∶ Green’s operator, 𝐼, 𝐽 ∶ channel index

⟨𝜙| 𝐹†𝐺†(𝐺−10 )
†𝑃𝑋𝐺0𝑃𝑋𝐺

−1
0 𝐺𝐹 |𝜙⟩ inherits the analytic properties (not all) of the
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SO(3)→ block diagnalizable

�̂� = �̂�0 ⊕ �̂�1 ⊕ �̂�2⋯

𝐴(𝑘, 𝜃, 𝜙) = ∑
𝑙,𝑚
𝐴𝑙(𝑘) 𝑌𝑙𝑚(𝜃, 𝜙)𝑌

∗
𝑙𝑚(𝜃, 𝜙)

global structure of the RS of 𝑎𝑙: same→ML-Expansion

𝐴𝑙 =
2𝑙 + 1

𝑘 cot 𝛿𝑙 − 𝑖𝑘
, 𝑘2𝑙+1 cot 𝛿𝑙 = −

1
𝑎𝑙
+ 1
2
𝑟𝑙𝑘

2 + ⋯
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Model Calculation

T. Nishibuchi, T. Hyodo, Contribution to HYP

2022, e-Print: 2208.14608 [hep-ph]

𝑧𝑡ℎ = 1610 − 30𝑖 MeV

3-channel MLE 1-pole term: Arg[𝑟𝑛]= −0.23𝜋

1.500 1.525 1.550 1.575 1.600 1.625 1.650 1.675 1.700
<�Ξ [GeV]

−2

−1

0

1

2

3

4

5

−1
/�

�
?
(I)

 ̄Λ  ̄Σ

Real
Imag

Re I

Im I

�Ξ1.461  ̄Λ1.613

)++ 1.686
3

)0
∞

[1C1]+

[CC1]−

[11C]+

[C1C]−

[C11]−

[111]+

[CCC]−

[1CC]+

[1C1]−

[CC1]+

[11C]−

[C1C]+

[C11]+

[111]−

[CCC]+

[1CC]−

1.610-0.0308



Model: Pole Properties

Supplementary Materials 38/38

W. Yamada, O. Morimatsu, T. Sato, Phys. Rev. Lett. 129, 192001 (2022)

pole 1, 2, and their sum, 1þ 2, respectively. Pole positions
and residues of A11 are given in Table I.
Sharp structures are observed below the ΛΛ threshold

(bound state) in case (a), at the ΛΛ threshold (virtual
state) in case (b), between the ΛΛ and NΞ threshold
(resonance) in case (c), and at the NΞ threshold (“threshold
cusp”) in case (d). The amplitudes of direct model
calculation and Mittag-Leffler expansion with all four
poles, 1þ 2þ 3þ 4, perfectly coincide, which confirms
our result, Eq. (16). The contribution from pole 1, which is
nearest to the physical domain, gives the sharp structures
of the amplitudes of direct model calculation. The sum of
contributions from poles 1 and 2 reproduces the amplitudes
of direct model calculation in almost the entire physical
domain. This is due to the extremely simple nature of the
model, i.e., the number of poles is four and only two of
them are close to the physical domain, which will not be the
case in a more realistic situation.
Figure 4 is the contour plot of jA11j2 on the torus, a map

of the three-channel S matrix, for cases (a)–(d). It can be
observed that as the coupling, C, increases, pole 1 moves
along the imaginary axis transitioning from a bound-state
pole on the [ttt] sheet in case (a) to a virtual-state pole on
the [btt] sheet in case (b), then it becomes a resonance pole
on the [btt] sheet in case (c), and finally a pole on the [tbt]
sheet, which causes a “threshold cusp” in case (d). Pole 2
moves along the imaginary axis on the [btt] sheet until it
merges with pole 1. Then, it moves symmetrically to pole 1
with respect to the imaginary axis. Poles 3 and 4 hardly
move. From Fig. 4 together with Fig. 3, one can clearly
observe that the effects of the poles show up as sharp
structures on the scattering amplitude around the nearest
physical energy region. We would like to mention here that
the use of the uniformization variable makes it extremely
easy and transparent to locate the positions of poles. When

one traces poles on multisheeted complex
ffiffiffi
s

p
plane one has

to move around different sheets.
The above demonstration shows that as a function of the

uniformization variable the three-channel scattering ampli-
tude is indeed given by the Mittag-Leffler expansion,
Eq. (16), and can intuitively be understood from the

TABLE I. Pole positions and residues of the ΛΛ → ΛΛ elastic scattering amplitude, A11, for cases (a)–(d). The first and second rows
are the pole positions, zi, and residues, ri, respectively, on the torus. The third row is the complex center-of-mass energy of the pole,

ffiffiffiffi
si

p
,

in units of [GeV] and the complex Riemann sheet. The threshold energies, ε1, ε2, and ε3, are 2.231, 2.257, and 2.381 GeV, respectively.

C (GeV−2) Pole 1 Pole 2 Pole 3 Pole 4

(a) 40.00
−0.267i −0.496i 0.5þ 0.043i 0.5 − 0.702i
0.172i −0.154i −0.015i −0.004i

2.221 [ttt] 2.200 [btt] −1.802i [ttb] 13.477i [tbt]

(b) 45.60
−0.371i −0.398i 0.5þ 0.048i 0.5 − 0.700i
1.750i −1.727i −0.018i −0.005i

2.231 [btt] 2.229 [btt] −1.252i [ttb] 11.722i [tbt]

(c) 60.00
0.177 − 0.392i −0.177 − 0.392i 0.5þ 0.060i 0.5 − 0.697i
−0.215þ 0.018i 0.215þ 0.018i −0.027i −0.009i

2.253 − 0.005i [btt] 2.253þ 0.005i [btt] 0.907 [ttb] 8.657i [tbt]

(d) 80.00
0.271 − 0.402i −0.271 − 0.402i 0.5þ 0.073i 0.5 − 0.691i
−0.249þ 0.028i 0.249þ 0.028i −0.038i −0.017i

2.259þ 0.002i [tbt] 2.259 − 0.002i [tbt] 1.510 [ttb] 6.124i [tbt]

FIG. 4. Contour plot of jA11j2 on the torus for cases (a)–(d).
The red line corresponds to the physical domain. Labels ΛΛ, NΞ,
and ΣΣ represent the corresponding thresholds, and ∞ corres-
ponds to infinity point on the physical sheet.

PHYSICAL REVIEW LETTERS 129, 192001 (2022)
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