Mittag-Leffler Expansion to Hadron Physics

ELPH Workshop C033, December 7, 2022

Wren Yamada

University of Tokyo, KEK

```
W. Yamada, O. Morimatsu, Phys. Rev. C 102, }055201\mathrm{ (2020)
W. Yamada, O. Morimatsu, Phys. Rev. C 103, }045201\mathrm{ (2021)
W. Yamada, O. Morimatsu, T. Sato, K. Yazaki, Phys. Rev. D 105, 014034 (2022)
W. Yamada, O. Morimatsu, T. Sato, Phys. Rev. Lett. 129, 192001 (2022)
```


Contents

- Analytic structure of S-matrix and shape of poles:

Energy Region	Structure of S-matrix	Shape
Distant from threshold	Trivial ('flat') in Energy	Breit-Wigner O
Near threshold	Non-trivial in Energy	Breit-Wigner \times

Objective:

Clarify analytic stucture of 2, 3-channel S-matrix: draw a 'map' of the S-matrix Near-threshold spectrum decomposition \& extraction of pole properties

- Uniformization: mapping the non-trivial analytic structure of S-matrix

■ Mittag-Leffler Expansion: pole expansion of meromorphic functions

Uniformization

Uniformization

'Multi-sheeted' Riemann surface (e.g. Energy-parameterization)

$$
\downarrow \text { Conformal Map }
$$

Uniformized Plane
Trivial surface (as much as possible), entire or partial region of a complex plane

- Analytic structure preserved
- Globally 'flat' nature (constant curvature) \rightarrow clarifies "distance"

■ Example: Single-channel S-matrix 2-body, RH cuts and poles

Mittag-Leffler Expansion

Mittag-Leffler Expansion: Pole expansion of meromorphic functions
Corollary from Mittag-Leffler Theorem,
$F(z)$: meromorphic, $\quad \sum_{n}\left|r_{n}\right| /\left|z_{n}\right|^{m+1}$: finite $\quad z_{n}, r_{n}$: pole position, residue

$$
F(z)=\underbrace{z^{m} \sum_{n} \frac{z_{n}^{-m} r_{n}}{z-z_{n}}}_{\text {Pole terms }}+\underbrace{E(z)}_{\text {Subtraction terms }}
$$

- Example: $\cot z=\sum_{n=-\infty}^{\infty} \frac{1}{z-n \pi}$
- Single-channel S-matrix Mittag-Leffler Expansion by momentum k
J. Humblet, L.Rosenfeld, Nucl. Physics 26 (1961)
D. Ramírez Jiménez, N. Kelkar, Annals of Physics 396, 18 (2018)

$$
A(k)=k^{m} \sum_{n}\left[\frac{k_{n}^{-m} r_{n}}{k-k_{n}}+\frac{\left(-k_{n}^{*}\right)^{-m} r_{n}^{*}}{k+k_{n}^{*}}\right]+Q(k)
$$

Decomposition of the Spectrum: single-channel

Resonant-state Expansion of the Resolvent

T. Berggren, P. Lind, Phys. Rev. C 47, 768 (1993)

- Spectral Expansion

$\hat{\mathcal{G}}(k)=\underbrace{\sum_{n} \frac{\left|\kappa_{n}\right\rangle\left\langle\kappa_{n}\right|}{k-i \kappa_{n}}}_{\text {Bound }}+\underbrace{\int_{C} d k_{c} \frac{\left|k_{c}\right\rangle\left\langle k_{c}\right|}{k-k_{c}}}_{\text {Continuum }}$
- Berggren Expansion

- Mittag-Leffler Expansion

$\hat{\mathcal{G}}(k)=\underbrace{\sum_{n} \frac{\left|\kappa_{n}\right\rangle\left\langle\kappa_{n}\right.}{k-i \kappa_{n}}}_{\text {Bound }}+\underbrace{\sum_{l} \frac{\left|\kappa_{l}^{\prime}\right\rangle\left\langle\kappa_{l}^{\prime}\right|}{k+i \kappa_{l}^{\prime} \mid}}_{\text {Anti-bound }}+\underbrace{\sum_{m} \frac{\left|k_{m}\right\rangle\left\langle\tilde{k}_{m}\right|}{k-k_{m}}}_{\text {Resonance }}$

Riemann Sphere representation of the 2-channel S-matrix

- RS of 2-channel S-matrix 2-body, RH cuts and poles
- 4-sheeted \sqrt{s}-plane: [tt], [bt], [tb], [bb]
e.g. $[t b]_{+}$means $\operatorname{Im} q_{1}>0, I m q_{2}>0$, and $\operatorname{Im} \sqrt{s}>0$

Riemann Sphere representation of the 2-channel S-matrix

Mittag-Leffler Expansion on the Riemann Sphere

2-channel Mittag-Leffler Expansion

$$
A(z)=\sum_{i} \frac{r_{i}}{z-z_{i}}+\text { (subtraction) }
$$

W. Y., O.M., PRC 102, 055201 (2020)

- Unitarity of the S-matrix:

$$
S\left(-z^{*}\right)=S(z)^{*}
$$

Symmetric poles about Im z-axis
\rightarrow appropriate threshold behavior

- Lone pole-pair contribution:

$$
\begin{gathered}
A_{n}=\frac{r_{n}}{z-z_{n}}-\frac{r_{n}^{*}}{z+z_{n}^{*}} \\
\operatorname{Im} A_{n}(z)= \begin{cases}0, & \left(\sqrt{s}<\epsilon_{1}\right) \\
-\operatorname{lm} \frac{2 r_{n}}{\left(z_{n}-i\right)^{2}} \frac{q_{1}}{\Delta}+O\left(q_{1}^{2}\right), & \left(\sqrt{s}>\epsilon_{1}\right)\end{cases}
\end{gathered}
$$

$\operatorname{Im} A_{n}(z)=$

$$
\begin{cases}\operatorname{Im} \frac{2 r_{n}}{1-z_{n}^{2}}-\operatorname{Re} \frac{4 r_{n} z_{n}}{\left(1-z_{n}^{2}\right)^{2}} \frac{\tilde{q}_{2}}{\Delta}+O\left(\tilde{q}_{2}^{2}\right), & \left(\sqrt{s}<\epsilon_{2}\right) \\ \operatorname{Im} \frac{2 r_{n}}{1-z_{n}^{2}}-\operatorname{Im} \frac{2 r_{n}\left(1+z_{n}^{2}\right)}{\left(1-z_{n}^{2}\right)^{2}} \frac{q_{2}}{\Delta}+O\left(q_{2}^{2}\right), & \left(\sqrt{s}>\epsilon_{2}\right)\end{cases}
$$

Mittag-Leffler Expansion on the Riemann Sphere

- Lone pole-pair contribution, A_{n}

Under the condition, $\left|z_{R}\right| \gg 1, \zeta_{R} \gg \eta_{R}$, where $z_{R}=\zeta_{R}+i \eta_{R}$,

$$
\begin{aligned}
& \frac{r_{R}}{z-z_{R}}-\left.\frac{r_{R}^{*}}{z+z_{R}^{*}}\right|_{z=\zeta_{R}} \simeq \frac{\Delta\left[r_{R} \zeta_{R}+\left(r_{R}-r_{R}^{*}\right) i \eta_{R} / 2\right]}{4\left(2 m_{R}+i \Gamma_{R} / 2\right)} \frac{1}{\sqrt{s}-m_{R}+i \Gamma_{R} / 2} \\
& \epsilon_{1}=1.0, \epsilon_{2}=2.0, \Gamma_{R}=0.2, m_{R}=2.1,4.1
\end{aligned}
$$

- Approriate threshold behaviors
- Coincides with Breit-Wigner Form in the distant-to-threshold limit

Lineshapes: Pole at upper threshold

Wren A. Yamada, Osamu Morimatsu, Toru Sato, Koichi Yazaki Phys. Rev. D 105, 014034 (2022)

- Resonance: [bt]_, [bb]_sheet, "Threshold Cusp": [tb]_ sheet

■ 'Peak position', 'width' = closest physical point, and its distance on $z \neq \operatorname{Re} E, \operatorname{Im} E$

Flatté Formula on the Riemann Sphere

Flatté Formula

S. M. Flatté, Phys. Lett., B63, 224 (1976)

$$
A_{11}=\frac{-\gamma_{1} k_{1}}{E-m+i \gamma_{1} k_{1}+i \gamma_{2} k_{2}}
$$

$$
A_{11}=-\gamma \frac{z^{3}+z}{z^{4}+1+\alpha z^{2}+i\left[\left(\gamma+\gamma^{\prime}\right) z^{3}+\left(\gamma-\gamma^{\prime}\right) z\right]}
$$

$$
\gamma=4 \frac{\gamma_{1} \mu_{1}}{\Delta}, \gamma^{\prime}=4 \frac{\gamma_{2} \sqrt{\mu_{1} \mu_{2}}}{\Delta}, \alpha=4 \frac{\mu_{1}}{\Delta^{2}}\left[\varepsilon_{1}+\varepsilon_{2}-2 m\right]
$$

$$
A_{11}=\sum_{i=1,2}\left[\frac{r_{i}}{z-z_{i}}+\frac{r_{i}^{*}}{z+z_{i}^{*}}\right]
$$

2-pole Mittag-Leffler Expansion pole position condition: $\left|z_{1} z_{2}\right|=1$

- Always contain 2 pair of poles: one on [tb]/[bt], the other on [bb]-sheet
- At inelastic threshold: complex scattering length, complex effective range $\rightarrow 4$ parameters (Flatté has 3 . Leading to additional constraint $\left|z_{1} z_{2}\right|=1$)

Uniqueness of MLE Pole Decomposition

- Mittag-Leffler Expansion: Pole decomposition on the uniformized plane

■ 2-channel uniformization plane: non-unique
Smooth bijective mapping $\mathrm{CP}^{1} \rightarrow \mathrm{CP}^{1}$ induces new uniformization plane

$$
\begin{gathered}
\operatorname{Aut}\left(\mathbb{C P}^{1}\right) \cong P G L(2, \mathbb{C}) \\
z \mapsto w=\frac{\alpha z+\beta}{\gamma z+\delta}, \text { where, } \operatorname{det}\left[\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right] \neq 0
\end{gathered}
$$

■ Question: Is the pole decomposition on z-plane and w-plane identical?
Ex: $\zeta=1 / z \quad z(\zeta):$ "north pole" ("south pole") projection of Riemann Sphere

$$
\frac{r_{n}^{[z]}}{z-z_{n}}=-r_{n}^{[z]} \frac{\zeta \zeta_{n}}{\zeta-\zeta_{n}}=\frac{r_{n}^{[\zeta]}}{\zeta_{n}} \frac{\zeta}{\zeta-\zeta_{n}}=\underbrace{\frac{r_{n}^{[\zeta]}}{\zeta-\zeta_{n}}+\frac{r_{n}^{[\zeta]}}{\zeta_{n}}}_{\text {Pole term on } \zeta}
$$

Pole term has indefiniteness of a constant fixed by imposing boundary condition: $A_{n} \rightarrow 0$ as approaching the infinity point on physical sheet

- MLE Pole decomposition unique under $\mathrm{CP}^{1} \rightarrow \mathrm{CP}^{1}$ transformations

Uniqueness of MLE Pole Decomposition

Non-algebraic mapping CP ${ }^{1} \rightarrow \mathrm{C} / \mathrm{Z}$: "Cylinder" гергеsentation

$$
\eta \mapsto \omega=\int_{0}^{\eta} \frac{d \zeta}{1+\zeta^{2}}=\arctan \eta(\eta \neq \pm i)
$$

- Periodicity: $A(\omega+\pi \mathbb{Z})=A(\omega)$
- Mittag-Leffler Expansion:

$$
A(\omega)=\sum_{n} r_{n}\left[\frac{1}{\omega-\omega_{n}}+\sum_{m \neq 0} \frac{1}{\omega-\omega_{n}+m \pi}\right]=\sum_{n} \underbrace{r_{n} \cot \left(\omega-\omega_{n}\right)}_{\text {Pole term }}
$$

$$
\begin{aligned}
\frac{r_{p}^{[\eta]}}{\eta-\eta_{p}} & =\frac{\left(1+\tan ^{2} \omega_{p}\right) r_{p}^{[\omega]}}{\tan \omega-\tan \omega_{p}} \quad \text { Corrections } \\
& =r_{p}^{[\omega]} \frac{1+\tan \omega \tan \omega_{p}-\tan \omega_{p}\left(\tan \omega-\tan \omega_{p}\right)}{\tan \omega-\tan \omega_{p}} \\
& =r_{p}^{[\omega]} \cot \left(\omega-\omega_{p}\right)-r_{p}^{[\omega]} \tan \omega_{p} .
\end{aligned}
$$

$$
\operatorname{Aut}(\mathbb{C} / \mathbb{Z}): z \mapsto\left\{\begin{array}{l}
z+a \\
-z
\end{array}\right.
$$

- MLE pole decomposition is unique under many different uniformization planes
- Obtain same results when fitting observables by a truncated MLE regardless of the choise of the uniformization plane (At least for $\mathrm{CP}^{1}, \mathrm{C} / \mathrm{Z}$)

$\Lambda(1405)$

Wren Yamada, Osamu Morimatsu, PRC 103, 045201
■ $\gamma p \rightarrow K^{+} \pi \Sigma$
K. Moriya, et al. CLAS, PRC 87, 035206 (2013)

■ $K^{-} p \rightarrow K^{-} p, \bar{K}^{0} n, \pi^{ \pm} \Sigma^{\mp}$
Abrams et al. Phys. Rev. 139, B454 (1965), Bangerter et al. Phys. Rev. D 23, 1484 (1981), Ciborowski et al. J. Phys. G: Nucl. Phys. 8, 13 (1982),

Csejthey-Barth et al. Phys.Lett. 16, 89 (1965), Humphrey et al. Phys. Rev. 127, 1305 (1962), Mast et al. Phys. Rev. D 14, 13 (1976), Sakitt et al. Phys. Rev. 139, B719 (1965)

- Sphere of 2-channel system: $\pi \Sigma, \bar{K} N$

■ 3-pole Mittag-Leffler Expansion, common poles

$$
\begin{aligned}
& \frac{d \sigma^{(\pi \Sigma)}}{d m}=\operatorname{Im} \sum_{n=1}^{3}\left[\frac{c_{n}^{(\pi \Sigma)}}{z-z_{n}}-\frac{c_{n}^{(\pi \Sigma) \star}}{z+z_{n}^{\star}}\right], \\
& \sigma^{(i f)}=\frac{k_{f}}{k_{i}} \operatorname{Im} \sum_{n=1}^{3}\left[\frac{c_{n}^{(i f)}}{z-z_{n}}-\frac{c_{n}^{(i f) \star}}{z+z_{n}^{*}}\right]
\end{aligned}
$$

$\Lambda(1405)$

$\wedge(1405)$

$x_{\text {/dof }}^{2}=1.18$

$\wedge(1405)$

$\wedge(1405)$

Pole 1
Pole 2
Pole 3

$z_{n}^{(3)}$	$0.5243+0.3159 i \pm 0.0062 \pm 0.0058 i$	$1.6402-1.042 i \pm 0.0684 \pm 0.0904 i$	$2.3227-0.0687 i \pm 0.0033 \pm 0.0031 i$
$\sqrt{s}_{n}^{(3)}$	$1.4203-0.0475 i \pm 0.0011 \pm 0.0015 i$	$1.4283-0.074 i \pm 0.01 \pm 0.0037 i$	$1.5138-0.0068 i \pm 0.0003 \pm 0.0003 i$

Chiral unitary calculation

Y. Ikeda, T. Hyodo and W. Weise, Phys. Lett. B 706, 63 (2011)
Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881, 98 (2012)
Z.-H. Guo and J. Oller, Phys. Rev. C 87, 3, 035202 (2013)
M. Mai and U.-G. Meißner, Eur. Phys. J. A 51, 3, 30 (2015)

approach	pole 1 [MeV]	pole 2 [MeV]
Refs. [14, 15], NLO	$1424_{-23}^{+7}-i 26_{-14}^{+3}$	$1381_{-6}^{+18}-i 81_{-8}^{+19}$
Ref. [17], Fit II	$1421_{-2}^{+3}-i 19_{-5}^{+8}$	$1388_{-9}^{+9}-i 114_{-25}^{+24}$
Ref. [18], solution \#2	$1434_{-2}^{+2}-i 10_{-1}^{+2}$	$1330_{-5}^{+4}-i 56_{-11}^{+17}$
Ref. [18], solution \#4	$1429_{-7}^{+8}-i 12_{-3}^{+2}$	$1325_{-15}^{+15}-i 90_{-18}^{+12}$

Z (3900)

M. Ablikim et al., Phys. Rev. Lett. 110, 252001 (BESIII)
M. Ablikim et al., Phys. Rev. Lett. 112, 022001 (BESIII)
Z. Q. Liu et al., Phys. Rev. Lett. 110, 252002 (Belle)

HALQCD: $\pi J / \psi-\rho \eta_{c}-D \bar{D}^{*}$, s-wave, (2+1)-flavor, $m_{\pi}=410-700 \mathrm{MeV}$
Y. Ikeda, et.al., Phys. Rev. Lett. 117, 242001 (2016)

Case	[tb]	[tbb]	[btb]
I	$-146(112)(108)-\mathrm{i} 38$	$-177(116)(61)-\mathrm{i} 175$	$-369(129)(102)-\mathrm{i} 207$
	$-93(55)(21)-\mathrm{i} 9(25)(7)$	$(30)(22)$	$(61)(20)$
II	$-102(84)(45)-\mathrm{i} 14(11)(7)$	$-141(92)(64)-\mathrm{i} 151$	$-322(141)(111)-\mathrm{i} 114$
	$-59(67)(11)-\mathrm{i} 3(12)(1)$	$(149)(132)$	$(96)(75)$
III	$-100(48)(29)-\mathrm{i} 7(37)(17)$	$-127(52)(43)-\mathrm{i} 199$	$-356(108)(28)-\mathrm{i} 277$
	$-53(30)(5)-\mathrm{i} 2(11)(3)$	$(44)(28)$	$(138)(95)$

Z (3900)

- HALQCD poles on the $\pi / / \psi-\bar{D} D^{*}$ sphere $\left(m_{\pi}=411 \mathrm{MeV}\right)$

TABLE II. The uniformization variables, z_{p}, and the scaled energy, e_{p}, for S-matrix poles, $1-5$ (Im $e_{p}<0$), given in Ref. [20], and for their conjugate poles, $1^{*}-5^{*}\left(\operatorname{Im} e_{p}>0\right)$, not given in Ref. [20]. Also shown is the sheet on which each pole is positioned.

	$1,1^{*}$	$2,2^{*}$	$3,3^{*}$	$4,4^{*}$	$5,5^{*}$
z_{p}	$\pm 1.11-0.95 i$	$\mp 0.74-0.53 i$	$\mp 0.86-0.45 i$	$\mp 0.65-0.54 i$	$\pm 0.79-1.34 i$
e_{p}	$0.60 \mp 0.41 i$	$0.66 \mp 0.09 i$	$0.79 \mp 0.02 i$	$0.60 \mp 0.17 i$	$0.16 \mp 0.44 i$
Sheet	$[b b b]$	$[t t b]$	$[t t b]$	$[t b b]$	$[b t b]$

Z (3900)

Wren A. Yamada, Osamu Morimatsu, Toru Sato, Koichi Yazaki Phys. Rev. D 105, 014034 (2022)

- 2-channel Mittag-Leffler Expansion $\left(\pi J / \psi-\bar{D} D^{*}\right)$

$$
f\left(z ; z_{p}, \phi_{p}\right)=-\frac{1}{\pi} \operatorname{Im}\left[\frac{\exp \left(i \phi_{p}\right)}{z-z_{p}}-\frac{\exp \left(-i \phi_{p}\right)}{z+z_{p}^{*}}\right]
$$

- Separable potential model: $\pi J / \psi-\bar{D} D^{*}$ (HALQCD inspired)

$$
\begin{gathered}
V_{i j}\left(p^{\prime}, p\right)=g\left(p^{\prime}\right) v_{i j} g(p) \\
g(p)=\frac{\beta^{2}}{\beta^{2}+p^{2}}, v_{11}=v_{22}=0, v_{12}=v
\end{gathered}
$$

■ Enhanced "threshold cusp" structure at $\bar{D} D^{*}$ threshold from poles $2^{*}, 3^{*}$ (pole on [tb] ${ }_{+}$)

Analytic Structure of the RS of 3-channeled S-matrix

- RS of the 3-channel S-matrix: 2-body, RH cuts and poles
- $2^{3}=8$-sheeted \sqrt{s}-plane [tte], [btt], [tbt], [bbt], [ttb], [bbb], [tbb], [btb]

$$
\text { e.g. }[t t b]_{+} \text {means } \operatorname{Im} q_{1}>0, \operatorname{Im} q_{2}>0, \operatorname{Im} q_{3}<0 \text { and } \operatorname{Im} \sqrt{s}>0
$$

Analytic Structure of the RS of 3－channeled S－matrix

2 －sheeted \mathbf{z}_{12}－plane（z－plane using channel mass $\epsilon_{1}, \epsilon_{2}$ ）

$$
q_{1}=\frac{\Delta_{12}}{2}\left[z_{12}+1 / z_{12}\right], \quad q_{2}=\frac{\Delta_{12}}{2}\left[z_{12}-1 / z_{12}\right], \quad q_{3}=\frac{\Delta_{12}}{2 z_{12}} \underbrace{\sqrt{\left(1-z_{12}^{2} \gamma^{2}\right)\left(1-z_{12}^{2} / \gamma^{2}\right)}, \quad\left(\gamma=\frac{\sqrt{\epsilon_{3}^{2}-\epsilon_{1}^{2}}+\sqrt{\epsilon_{3}^{2}-\epsilon_{2}^{2}}}{\Delta_{12}}\right), ~(\gamma)}_{\text {sq.root cut } z_{12}= \pm \gamma, \pm 1 / \gamma})
$$

W．Y．O．M．T．S．arXiv：2203．17069［hep－ph］，Fig． 1

（楕円積分と楕円関数 おとぎの国の歩き方）
－3－channel S－matrix has the structure of a Torus，fundamentally different from the 2－channel case（Riemann Sphere）！

H．Cohn，Conformal mapping on Riemann surfaces（Courier Corporation，2014）
H．A．Weidenmüller Ann．Phys．（N．Y．）28， 60 （1964）
R．G．Newton，Scattering Theory of Waves and Particles（Springer，1982）

Torus representation of the 3-channel S-matrix

W. Yamada, O. Morimatsu, T. Sato, Phys. Rev. Lett. 129, 192001 (2022)

■ 3-channel Uniformized variable: z

$$
z[\tau]=\frac{1}{4 K(k)} \underbrace{\int_{0}^{\gamma / z_{12}} \frac{d \xi}{\sqrt{1-\xi^{2}} \sqrt{1-k^{2} \xi^{2}}}}_{\text {elliptic integral }} .
$$

$k=\frac{1}{\gamma^{2}}, K(k)=\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}}, \tau=\frac{K\left(\sqrt{1-k^{2}}\right)}{2 K(k)}$

$$
\gamma=\left(\sqrt{\epsilon_{3}^{2}-\epsilon_{1}^{2}}+\sqrt{\epsilon_{3}^{2}-\epsilon_{2}^{2}}\right) / \sqrt{\epsilon_{2}^{2}-\epsilon_{1}^{2}}
$$

- Double-periodicity

$$
2 \omega_{1}=1, \quad 2 \omega_{2}=\tau
$$

Mittag-Leffler Expansion on the Torus

Double Periodicity

■ Naive pole expansion + 1st, 2nd subtraction terms

$$
\begin{aligned}
& A(z)=\sum_{z_{i} \in \Lambda^{\star}}\left[\frac{r_{i}}{z-z_{i}}+\left[\sum_{m, n=0} \frac{r_{i}}{z-z_{i}-\Omega_{m n}}\right]+\right.\text { (subtractions) } \\
& \Lambda^{*}: \text { fundamental period parallelogram, } \Omega_{m n}: \text { lattice points } \\
&=C_{0}+C_{1} z+\sum_{z_{i} \in \Lambda^{*}} r_{i} \zeta\left(z-z_{i}\right) \\
& \text { Weierstrass Zeta function } \\
& \zeta(z)=\frac{1}{z}+\sum_{m, n=0}\left[\frac{1}{z-\Omega_{m n}}+\frac{1}{\Omega_{m n}}+\frac{z}{\Omega_{m n}^{2}}\right]=\frac{1}{z}+\sum_{m, n=0}\left[\frac{z^{2}}{\left(z-\Omega_{m n}\right) \Omega_{m n}^{2}}\right]
\end{aligned}
$$

- Boundary condition: $A \rightarrow 0$ at infinite energy

$$
c_{0}=-\sum_{z_{i} \in \Lambda^{*}} r_{i} \zeta\left(-z_{i}\right)
$$

Mittag-Leffler Expansion under the Torus representation

$$
A(z)=\sum_{z_{i} \in \Lambda^{*}} \underbrace{r_{i}\left[\zeta\left(z-z_{i}\right)+\zeta\left(z_{i}\right)\right]}_{\text {pole term }}, \quad \sum_{z_{i} \in \Lambda^{*}} r_{i}=\frac{1}{2 \pi i} \oint_{\partial \Lambda^{*}} d z A(z)=0
$$

Mittag-Leffler Expansion on the Torus

Mittag-Leffler Expansion on the Torus with periods $(1, \tau)$

$$
A(z)=\sum_{z_{i} \in \Lambda^{*}} r_{i}\left[\zeta\left(z-z_{i} ; \tau\right)+\zeta\left(z_{i} ; \tau\right)\right]
$$

pole term, τ dependence?
Torus does not have one-to-one correspondence with τ modular group $\operatorname{SL}(2, Z)$ induces an equivalent class of τ representing the same torus

$$
\begin{gathered}
{\left[\begin{array}{l}
\omega_{1} \\
\omega_{2}
\end{array}\right] \mapsto\left[\begin{array}{l}
\omega_{1}^{\prime} \\
\omega_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
\omega_{1} \\
\omega_{2}
\end{array}\right], \quad a, b, c, d \in \mathbb{Z}, \quad \operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=1} \\
z \mapsto z^{\prime}=(c \tau+d)^{-1} z \\
\zeta(z ; \tau)=\frac{1}{z}-\sum_{k=1}^{\infty} \mathcal{G}_{2 k+2}(\tau) z^{2 k+1} \mapsto \zeta\left(z ; \tau^{\prime}\right)=(c \tau+d) \zeta(z ; \tau)
\end{gathered}
$$

$\mathcal{G}_{2 k+2}$: Eisenstein series with weight $2 k+2$

$$
\begin{aligned}
r_{i}^{[\tau]}\left[\zeta\left(z-z_{i} ; \tau\right)+\zeta\left(z_{i} ; \tau\right)\right] & \mapsto \frac{r_{i}^{\left[\tau^{\prime}\right]}}{c \tau+d}(c \tau+d)\left[\zeta\left(z^{\prime}-z_{i}^{\prime} ; \tau^{\prime}\right)+\zeta\left(z_{i}^{\prime} ; \tau^{\prime}\right)\right] \\
& =r_{i}^{\left[\tau^{\prime}\right]}\left[\zeta\left(z^{\prime}-z_{i}^{\prime} ; \tau^{\prime}\right)+\zeta\left(z_{i}^{\prime} ; \tau^{\prime}\right)\right]
\end{aligned}
$$

- Pole decomposition of MLE is independent of the choice of τ

Model: $M-N E-\Sigma \Sigma$

Model: $\Lambda \Lambda-N E-\Sigma \Sigma\left[I=0, J^{P}=0^{+}\right.$, Flavor singlet $]$
D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl.Phys. B478 (1996) Y. Yamaguchi, T. Hyodo, Phys. Rev. C 94, 065207 (2016)
$C=40.00\left[\mathrm{GeV}^{-2}\right]$
(a)

$$
\begin{gathered}
\mathcal{L}_{i n t}=-\frac{1}{2}[B B]^{\dagger} \hat{C}[B B], \quad \hat{C}=\frac{C}{8}\left[\begin{array}{ccc}
1 & 2 & -\sqrt{3} \\
2 & 4 & -2 \sqrt{3} \\
-\sqrt{3} & -2 \sqrt{3} & 3
\end{array}\right] \\
i \hat{A}=-i \hat{C}[1-\hat{G} \hat{C}]^{-1}, \quad G_{i}=-i \mu_{i} k_{i} / 2 \pi
\end{gathered}
$$

Model: $M-N=-\Sigma \Sigma$

Model: $\Lambda \Lambda-N E-\Sigma \Sigma\left[I=0, J^{P}=0^{+}\right.$, Flavor singlet $]$
D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl.Phys. B478 (1996) Y. Yamaguchi, T. Hyodo, Phys. Rev. C 94, 065207 (2016)

$$
C=45.60\left[\mathrm{GeV}^{-2}\right]
$$

$$
\begin{gathered}
\mathcal{L}_{i n t}=-\frac{1}{2}[B B]^{\dagger} \hat{C}[B B], \quad \hat{C}=\frac{C}{8}\left[\begin{array}{ccc}
1 & 2 & -\sqrt{3} \\
2 & 4 & -2 \sqrt{3} \\
-\sqrt{3} & -2 \sqrt{3} & 3
\end{array}\right] \\
i \hat{A}=-i \hat{C}[1-\hat{G} \hat{C}]^{-1}, \quad G_{i}=-i \mu_{i} k_{i} / 2 \pi
\end{gathered}
$$

Model: $M-N=-\Sigma \Sigma$

Model: $\Lambda \Lambda-N E-\Sigma \Sigma\left[I=0, J^{P}=0^{+}\right.$, Flavor singlet $]$
D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl.Phys. B478 (1996) Y. Yamaguchi, T. Hyodo, Phys. Rev. C 94, 065207 (2016)

$$
C=60.00\left[\mathrm{GeV}^{-2}\right]
$$

$$
\begin{aligned}
\mathcal{L}_{i n t}= & -\frac{1}{2}[B B]^{\dagger} \hat{C}[B B], \quad \hat{C}=\frac{C}{8}\left[\begin{array}{ccc}
1 & 2 & -\sqrt{3} \\
2 & 4 & -2 \sqrt{3} \\
-\sqrt{3} & -2 \sqrt{3} & 3
\end{array}\right] \\
& i \hat{A}=-i \hat{C}[1-\hat{G} \hat{C}]^{-1}, \quad G_{i}=-i \mu_{i} k_{i} / 2 \pi
\end{aligned}
$$

Model: $M-N E-\Sigma \Sigma$

Model: $\Lambda \Lambda-N E-\Sigma \Sigma\left[I=0, J^{P}=0^{+}\right.$, Flavor singlet $]$

$$
C=80.00\left[\mathrm{GeV}^{-2}\right]
$$

D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl.Phys. B478 (1996) Y. Yamaguchi, T. Hyodo, Phys. Rev. C 94, 065207 (2016)

Model: $M-N E-\Sigma \Sigma$

Pole Trajectory of Pole $1 \&$ Pole 2 on the $\Lambda \Lambda-N E-\Sigma \Sigma$ Torus

- Smooth transition of pole position and peak structure: Especially a smooth transition from a resonance pole on [btt]. to pole with positive imaginary complex energy on [tbt] $]_{+}$manifested as a 'cusp-like' shape
■ 'Peak position' and 'width': closest physical point, distance on torus $\neq \operatorname{Re} E_{p}, \operatorname{Im} E_{\nmid \beta 88}$

Model: $I=1 \pi \Lambda-\pi \Sigma-\bar{K} N$

- Chiral-Unitary Model LO: $I=1 \pi \Lambda-\pi \Sigma-\bar{K} N$

三 MLE Fit (preliminary)

■ $\Xi_{c}^{+} \rightarrow \Xi^{-} \pi^{+} \pi^{+}$Belle, M. Sumihama et. al., PRL 122, 072501 (2019)

- Torus of 3-channel system: $\pi^{+} \Xi^{-}, \bar{K}^{0} \Lambda, \bar{K} \Sigma$

$$
A(z) \approx \sum_{n=1}^{3} r_{n}\left[\zeta\left(\zeta\left(z-z_{n}\right)+\zeta\left(z_{n}\right)\right)\right]+r_{n}^{*}\left[\zeta\left(z-z_{n}^{*}\right)-\zeta\left(z_{n}^{*}\right)\right]
$$

Pole \# 1
Pole \# 2
Pole \# 3

z	$0.096-0.223 i \pm 0.003 \pm 0.002 i$	$0.34-0.34 i \pm 0.07 \pm 0.08 i$	$0.00004+0.1 i \pm 0.00003 \pm 0.1 i$
$\varepsilon_{p}[\mathrm{GeV}]$	$1.530-0.005 i \pm 0.002 \pm 0.002 i$	$1.7+0.07 i \pm 0.1 \pm 0.08 i$	$1.3-0.0001 i \pm 0.4 \pm 0.0004 i$
$r_{p}^{z}\left[\mathrm{GeV}^{-1}\right]$	$-1.0+0.4 i \pm 0.4 \pm 0.3 i$	$-20-50 i \pm 60 \pm 20 i$	$-90000+50 i \pm 50000 \pm 20 i$
r_{p}^{ε}	$-1.1+0.4 i \pm 0.4 \pm 0.4 i$	$60-20 i \pm 20 \pm 70 i$	$-600+30000 i \pm 500 \pm 20000 i$

P_{c} MLE Fit (preliminary)

$\square \Lambda_{b}^{0} \rightarrow p J / \psi K^{-}$LHCb, R. Aaij et al. Phys. Rev. Lett. 122, 222001 (2019)

- Torus of 3-channel system: pJ/ $/, \Sigma_{c}^{+} \bar{D}^{0}, \Sigma_{c}^{+} \bar{D}^{* 0}$
- 4-pole Mittag-Leffler Expansion

$$
A(z) \approx \sum_{n=1}^{4} r_{n}\left[\left(\zeta\left(z-z_{n}\right)+\zeta\left(z_{n}\right)\right)\right]+r_{n}^{*}\left[\zeta\left(z-z_{n}^{*}\right)-\zeta\left(z_{n}^{*}\right)\right]
$$

	Pole \# 1	Pole \# 2	Pole \# 3	Pole \# 4
z	$0.25-0.23 i \pm 0.01 \pm 0.02 i$	$0.253-0.045 i \pm 0.006 \pm 0.006 i$	$0.30+0.03 i \pm 0.02 \pm 0.02 i$	$0.000+0.34 i \pm 0.005 \pm 0.03 i$
$\varepsilon_{p}[\mathrm{GeV}]$	$4.319-0.001 i \pm 0.004 \pm 0.002 i$	$4.442-0.002 i \pm 0.004 \pm 0.004 i$	$4.47+0.03 i \pm 0.02 \pm 0.02 i$	$3.5+0.01 i \pm 0.5 \pm 0.08 i$
$r_{p}^{z}\left[\mathrm{GeV}^{-1}\right]$	$-2-5 i \pm 4 \pm 4 i$	$0.3-0.6 i \pm 0.8 \pm 0.9 i$	$50-20 i \pm 20 \pm 10 i$	$-80+120 i \pm 2000 \pm 20 i$
r_{p}^{ε}	$0.8-0.8 i \pm 0.8 \pm 0.8 i$	$-0.4-0.3 i \pm 0.6 \pm 0.6 i$	$60+20 i \pm 20 \pm 20 i$	$-2100-1000 i \pm 600 \pm 30000 i$

P_{c} MLE Fit (preliminary)

$-\Lambda_{b}^{0} \rightarrow p / / \psi K^{-}$LHCb, R. Aaij et al. Phys. Rev. Lett. 122, 222001 (2019)

- Torus of 3-channel system: pJ/ $/, \Sigma_{c}^{+} \bar{D}^{0}, \Sigma_{c}^{+} \bar{D}^{* 0}$
- 4-pole Mittag-Leffler Expansion

$$
A(z) \approx \sum_{n=1}^{4} r_{n}\left[\zeta\left(\zeta\left(z-z_{n}\right)+\zeta\left(z_{n}\right)\right)\right]+r_{n}^{*}\left[\zeta\left(z-z_{n}^{*}\right)-\zeta\left(z_{n}^{*}\right)\right]
$$

Pole \# 1
Pole \# 2
Pole \# 3
Pole \# 4

z	$0.25-0.23 i \pm 0.01 \pm 0.02 i$	$0.253-0.045 i \pm 0.006 \pm 0.006 i$	$0.30+0.03 i \pm 0.02 \pm 0.02 i$	$0.000+0.34 i \pm 0.005 \pm 0.03 i$
$\varepsilon_{p}[\mathrm{GeV}]$	$4.319-0.001 i \pm 0.004 \pm 0.002 i$	$4.442-0.002 i \pm 0.004 \pm 0.004 i$	$4.47+0.03 i \pm 0.02 \pm 0.02 i$	$3.5+0.01 i \pm 0.5 \pm 0.08 i$
$r_{p}^{z}\left[\mathrm{GeV}^{-1}\right]$	$-2-5 i \pm 4 \pm 4 i$	$0.3-0.6 i \pm 0.8 \pm 0.9 i$	$50-20 i \pm 20 \pm 10 i$	$-80+120 i \pm 2000 \pm 20 i$
r_{p}^{ε}	$0.8-0.8 i \pm 0.8 \pm 0.8 i$	$-0.4-0.3 i \pm 0.6 \pm 0.6 i$	$60+20 i \pm 20 \pm 20 i$	$-2100-1000 i \pm 600 \pm 30000 i$

Summary

■ Non-trivial analytic structure of S-matrix in energy near the thresholds Breit-Wigner does not reflect the proper structure

- Uniformization: clarification pole position \leftrightarrow spectrum 2-channel S-matrix: Sphere, 3-channel S-matrix: Torus
- Mittag-Leffler Expansion Pole Expansion accounting the non-trivial analytic structure of S-matrix For 3-channel case, double-periodicity of torus has to be considered

■ Line shapes: Enhanced structure in spectrum \rightarrow Existence of nearby poles

- Smooth transition of peak structure (under smooth transition of pole)
- 'Resonances' ([bt(t)]_, $\left.[b b(t)]_{-},[b b(b)]_{-}\right)$,
'Cusp'-shaped enhancements ([tb($\left.t)]_{+}[(t) t b]_{+}\right)$
- Peak position \approx closest physical point on uniformized plane, $\neq \operatorname{Re} E_{\text {pole }}$
- Application of Mittag-Leffler Expansion:
- $\Lambda(1405)$: Primary pole on [bt]-sheet, $E_{p}>1420>1405 \mathrm{MeV}$
- Z(3900): Possible contribution from poles on [(t)tb] ${ }_{+}$
- 3-channel Mittag-Leffler Expansion to \equiv, P_{c}

Thank You!!

Supplementary Materials

Mittag-Leffler Expansion to \wedge (1405): 3 pole-terms

Mittag-Leffler Expansion to ^(1405): 3 pole-terms

Residues $\pi^{0} \Sigma^{0}:$ W. Yamada, O. Morimatsu, PRC 103, 045201

TABLE IV. Results for the residues of the invariant-mass distributions of $\pi^{0} \Sigma^{0}$ in units of $\mu \mathrm{b} / \mathrm{GeV}$ in nine bins of center-of-mass energy W by the uniformized Mittag-Leffler expansion with $m=3$.

$W(\mathrm{GeV})$	Pole 1	Pole 2	Pole 3
$1.95-2.05$	$-0.6515+0.3471 i \pm 0.2256 \pm 0.1211 i$	$0.5316-1.2492 i \pm 0.7596 \pm 1.3581 i$	$1.3537-0.6183 i \pm 2.7107 \pm 1.0427 i$
$2.05-2.15$	$-0.3179+0.5296 i \pm 0.0374 \pm 0.06 i$	$-0.3174-0.6043 i \pm 0.1764 \pm 0.1197 i$	$-0.011+0.0019 i \pm 0.0104 \pm 0.0121 i$
$2.15-2.25$	$-0.1085+0.3535 i \pm 0.0209 \pm 0.0333 i$	$-0.0763+0.0737 i \pm 0.1051 \pm 0.0997 i$	$-0.0015-0.009 i \pm 0.0108 \pm 0.0099 i$
$2.25-2.35$	$-0.053+0.2798 i \pm 0.0154 \pm 0.0245 i$	$0.0799+0.2387 i \pm 0.0854 \pm 0.0871 i$	$0.0081-0.0087 i \pm 0.0086 \pm 0.0082 i$
$2.35-2.45$	$0.0027+0.2895 i \pm 0.0139 \pm 0.0227 i$	$0.1853+0.2406 i \pm 0.0828 \pm 0.0885 i$	$0.0052-0.001 i \pm 0.0079 \pm 0.0073 i$
$2.45-2.55$	$0.0223+0.2323 i \pm 0.0097 \pm 0.0164 i$	$0.1871+0.2054 i \pm 0.0618 \pm 0.0691 i$	$-0.0038-0.0032 i \pm 0.0061 \pm 0.0063 i$
$2.55-2.65$	$0.0088+0.1641 i \pm 0.0084 \pm 0.0141 i$	$0.1101+0.1044 i \pm 0.0479 \pm 0.0491 i$	$-0.0051-0.0098 i \pm 0.0054 \pm 0.0042 i$
$2.65-2.75$	$-0.0018+0.1221 i \pm 0.0076 \pm 0.0126 i$	$0.0883+0.1107 i \pm 0.0414 \pm 0.0428 i$	$-0.0026-0.0058 i \pm 0.0047 \pm 0.0038 i$
$2.75-2.85$	$0.0089+0.094 i \pm 0.0058 \pm 0.009 i$	$0.0417+0.0439 i \pm 0.0317 \pm 0.0294 i$	$0.0018-0.0052 i \pm 0.0025 \pm 0.0032 i$

Residues $\pi^{+} \Sigma^{-}:$W. Yamada, O. Morimatsu, PRC 103, 045201

TABLE II. Results for the residues of the invariant-mass distributions of $\pi^{+} \Sigma^{-}$in units of $\mu \mathrm{b} / \mathrm{GeV}$ in nine bins of center-of-mass energy W by the uniformized Mittag-Leffler expansion with $m=3$.

$W(\mathrm{GeV})$	Pole 1	Pole 2	Pole 3
$1.95-2.05$	$-0.3486+0.3026 i \pm 0.0154 \pm 0.0149 i$	$0.2487-0.122 i \pm 0.053 \pm 0.0342 i$	$-0.0016-0.0029 i \pm 0.0013 \pm 0.0014 i$
$2.05-2.15$	$-0.3809+0.3245 i \pm 0.0156 \pm 0.0135 i$	$0.1451-0.1877 i \pm 0.0442 \pm 0.0225 i$	$-0.0175-0.0081 i \pm 0.0034 \pm 0.0023 i$
$2.15-2.25$	$-0.2662+0.1989 i \pm 0.0121 \pm 0.0096 i$	$0.0294-0.0919 i \pm 0.028 \pm 0.0183 i$	$-0.0108-0.0133 i \pm 0.0029 \pm 0.0021 i$
$2.25-2.35$	$-0.2539+0.208 i \pm 0.013 \pm 0.0106 i$	$0.0165-0.0339 i \pm 0.0318 \pm 0.0227 i$	$0.0014-0.0122 i \pm 0.0023 \pm 0.0021 i$
$2.35-2.45$	$-0.2016+0.2142 i \pm 0.0131 \pm 0.0104 i$	$0.0864-0.0442 i \pm 0.0306 \pm 0.0189 i$	$-0.004-0.0105 i \pm 0.0021 \pm 0.0019 i$
$2.45-2.55$	$-0.1595+0.1369 i \pm 0.0097 \pm 0.008 i$	$0.0423-0.0179 i \pm 0.0219 \pm 0.0151 i$	$-0.0038-0.0091 i \pm 0.0018 \pm 0.0017 i$
$2.55-2.65$	$-0.1072+0.0925 i \pm 0.008 \pm 0.006 i$	$0.025-0.0066 i \pm 0.0169 \pm 0.0119 i$	$-0.0043-0.0065 i \pm 0.0016 \pm 0.0014 i$
$2.65-2.75$	$-0.0891+0.057 i \pm 0.0065 \pm 0.0046 i$	$0.0189+0.0133 i \pm 0.0139 \pm 0.01 i$	$-0.0039-0.0062 i \pm 0.0014 \pm 0.0012 i$
$2.75-2.85$	$-0.0657+0.0466 i \pm 0.0056 \pm 0.0042 i$	$0.0161-0.0066 i \pm 0.0115 \pm 0.008 i$	$-0.0053-0.0051 i \pm 0.0013 \pm 0.0011 i$

Residues $\pi^{-} \Sigma^{+}$: W. Yamada, O. Morimatsu, PRC 103, 045201

TABLE III. Results for the residues of the invariant-mass distributions of $\pi^{-} \Sigma^{+}$in units of $\mu \mathrm{b} / \mathrm{GeV}$ in nine bins of center-of-mass energy W by the uniformized Mittag-Leffler expansion with $m=3$.

$W(\mathrm{GeV})$	Pole 1	Pole 2	Pole 3
$1.95-2.05$	$-0.2247+0.542 i \pm 0.0319 \pm 0.0262 i$	$0.358-0.2978 i \pm 0.0864 \pm 0.0491 i$	$-0.0013-0.0038 i \pm 0.0017 \pm 0.0017 i$
$2.05-2.15$	$-0.1119+0.7353 i \pm 0.035 \pm 0.0301 i$	$0.0861-0.542 i \pm 0.0823 \pm 0.0456 i$	$-0.0165-0.0155 i \pm 0.0035 \pm 0.0033 i$
$2.15-2.25$	$0.1962+0.4702 i \pm 0.02 \pm 0.0162 i$	$0.2154-0.1012 i \pm 0.0524 \pm 0.0325 i$	$0.002-0.0171 i \pm 0.0027 \pm 0.0026 i$
$2.25-2.35$	$0.0662+0.3112 i \pm 0.0144 \pm 0.0129 i$	$0.1313-0.0568 i \pm 0.0374 \pm 0.0233 i$	$0.0081+0.001 i \pm 0.0014 \pm 0.002 i$
$2.35-2.45$	$-0.0017+0.3091 i \pm 0.0116 \pm 0.0116 i$	$0.2839+0.0335 i \pm 0.0461 \pm 0.0327 i$	$0.0028-0.0026 i \pm 0.0018 \pm 0.0016 i$
$2.45-2.55$	$-0.0119+0.2237 i \pm 0.009 \pm 0.0088 i$	$0.2132+0.017 i \pm 0.0346 \pm 0.0236 i$	$0.0004-0.006 i \pm 0.0014 \pm 0.0012 i$
$2.55-2.65$	$-0.0189+0.1726 i \pm 0.0075 \pm 0.0073 i$	$0.1377-0.0008 i \pm 0.0248 \pm 0.0162 i$	$-0.0006-0.0038 i \pm 0.001 \pm 0.0011 i$
$2.65-2.75$	$-0.0123+0.1263 i \pm 0.0062 \pm 0.0055 i$	$0.1136-0.0044 i \pm 0.02 \pm 0.0131 i$	$-0.0029-0.0035 i \pm 0.001 \pm 0.0009 i$
$2.75-2.85$	$-0.0173+0.0932 i \pm 0.0055 \pm 0.005 i$	$0.0859-0.0121 i \pm 0.016 \pm 0.0096 i$	$-0.0021-0.0028 i \pm 0.0009 \pm 0.0007 i$

Optical Theorem

$$
\begin{aligned}
\pi\left|T_{X}\right|^{2} & =\sum_{I J}\langle\phi| F_{l}^{\dagger} G_{l}^{\dagger}\left(G_{10}^{-1}\right)^{\dagger}|X\rangle \operatorname{Im} G_{0}^{X}\langle X| G_{j 0}^{-1} G_{J} F_{J}|\phi\rangle \\
& =\sum_{I J}\langle\phi| F_{l}^{\dagger} G_{l}^{\dagger}\left(G_{10}^{-1}\right)^{\dagger} P_{X} \operatorname{Im} G_{0} P_{X} G_{j 0}^{-1} G_{J} F_{J}|\phi\rangle \quad P_{X}: \text { projection operator onto }|X\rangle \\
& =\langle\phi| \sum_{l}\left(F_{l}^{\dagger} G_{l}^{\dagger}\left(G_{10}^{-1}\right)^{\dagger}\right) P_{X} \operatorname{Im} G_{0} P_{X} \sum_{J}\left(G_{j 0}^{-1} G_{J} F_{J}\right)|\phi\rangle \\
& =\langle\phi| F^{\dagger} G^{\dagger}\left(G_{0}^{-1}\right)^{\dagger} P_{X} \operatorname{Im} G_{0} P_{X} G_{0}^{-1} G F|\phi\rangle \quad G_{0}^{-1} G F \equiv \sum_{I} G_{10}^{-1} G_{I} F_{l} \\
& =\operatorname{Im}\langle\phi| F^{\dagger} G^{\dagger}\left(G_{0}^{-1}\right)^{\dagger} P_{X} G_{0} P_{X} G_{0}^{-1} G F|\phi\rangle \\
& G: \text { Green's operator, } \quad \text { I,J : channel index }
\end{aligned}
$$

- $\langle\phi| F^{\dagger} G^{\dagger}\left(G_{0}^{-1}\right)^{\dagger} P_{x} G_{0} P_{x} G_{0}^{-1} G F|\phi\rangle$ inherits the analytic properties (not all) of the Green's function

Partialwave analysys

$$
\mathrm{SO}(3) \rightarrow \text { block diagnalizable }
$$

$$
\begin{gather*}
\hat{A}=\hat{A}_{0} \oplus \hat{A}_{1} \oplus \hat{A}_{2} \cdots \\
, \theta, \phi)=\sum_{l, m} A_{l}(k) Y_{l m}(\theta, \phi) Y_{l m}^{*}(\theta, \phi)
\end{gather*}
$$

$$
\begin{aligned}
& \qquad A(k, \theta, \phi)=\sum_{l, m} A_{l}(k) Y_{l m}(\theta, \phi) Y_{l m}^{*}(\theta, \phi) \\
& \text { RS of } a_{l}: \text { same } \rightarrow \text { ML-Expansion }
\end{aligned}
$$

global structure of the RS of a_{l} : same \rightarrow ML-Expansion

$$
A_{l}=\frac{2 l+1}{k \cot \delta_{l}-i k}, \quad k^{2 l+1} \cot \delta_{l}=-\frac{1}{a_{l}}+\frac{1}{2} r_{l} k^{2}+\cdots
$$

\square
0
-
■
\qquad

Abstract

Lineshape: Example

Model Calculation

T. Nishibuchi, T. Hyodo, Contribution to HYP 2022, e-Print: 2208.14608 [hep-ph]

$$
z_{t h}=1610-30 i \mathrm{MeV}
$$

3-channel MLE 1-pole term: $\operatorname{Arg}\left[r_{n}\right]=-0.23 \pi$

Model: Pole Properties

W. Yamada, O. Morimatsu, T. Sato, Phys. Rev. Lett. 129, 192001 (2022)

TABLE I. Pole positions and residues of the $\Lambda \Lambda \rightarrow \Lambda \Lambda$ elastic scattering amplitude, \mathcal{A}_{11}, for cases (a)-(d). The first and second rows are the pole positions, z_{i}, and residues, r_{i}, respectively, on the torus. The third row is the complex center-of-mass energy of the pole, $\sqrt{s_{i}}$, in units of $[\mathrm{GeV}]$ and the complex Riemann sheet. The threshold energies, $\varepsilon_{1}, \varepsilon_{2}$, and ε_{3}, are $2.231,2.257$, and 2.381 GeV , respectively.

	$C\left(\mathrm{GeV}^{-2}\right)$	Pole 1	Pole 2	Pole 3	Pole 4
(a)	40.00	$\begin{gathered} -0.267 i \\ 0.172 i \\ 2.221[t t t] \end{gathered}$	$\begin{gathered} -0.496 i \\ -0.154 i \\ 2.200[b t t] \end{gathered}$	$\begin{gathered} 0.5+0.043 i \\ -0.015 i \\ -1.802 i[t t b] \end{gathered}$	$\begin{gathered} 0.5-0.702 i \\ -0.004 i \\ 13.477 i[t b t] \end{gathered}$
(b)	45.60	$\begin{gathered} \hline-0.371 i \\ 1.750 i \\ 2.231[b t t] \end{gathered}$	$\begin{gathered} \hline-0.398 i \\ -1.727 i \\ 2.229[b t t] \end{gathered}$	$\begin{gathered} \hline 0.5+0.048 i \\ -0.018 i \\ -1.252 i[t t b] \end{gathered}$	$\begin{gathered} \hline 0.5-0.700 i \\ -0.005 i \\ 11.722 i[t b t] \end{gathered}$
(c)	60.00	$\begin{gathered} 0.177-0.392 i \\ -0.215+0.018 i \\ 2.253-0.005 i[b t t] \end{gathered}$	$\begin{gathered} -0.177-0.392 i \\ 0.215+0.018 i \\ 2.253+0.005 i[b t t] \end{gathered}$	$\begin{gathered} 0.5+0.060 i \\ -0.027 i \\ 0.907[\mathrm{ttb}] \end{gathered}$	$\begin{gathered} 0.5-0.697 i \\ -0.009 i \\ 8.657 i[t b t] \end{gathered}$
(d)	80.00	$\begin{gathered} 0.271-0.402 i \\ -0.249+0.028 i \\ 2.259+0.002 i[t b t] \end{gathered}$	$\begin{gathered} -0.271-0.402 i \\ 0.249+0.028 i \\ 2.259-0.002 i[t b t] \end{gathered}$	$\begin{gathered} \hline 0.5+0.073 i \\ -0.038 i \\ 1.510[t t b] \end{gathered}$	$\begin{gathered} \hline 0.5-0.691 i \\ -0.017 i \\ 6.124 i[t b t] \end{gathered}$

