Mittag-Leffler Expansion to Hadron Physics

ELPH Workshop C033, December 7, 2022

Wren Yamada

University of Tokyo, KEK

W. Yamada, O. Morimatsu, Phys. Rev. C 102, 055201 (2020)

W. Yamada, O. Morimatsu, Phys. Rev. C 103, 045201 (2021)

W. Yamada, O. Morimatsu, T. Sato, K. Yazaki, Phys. Rev. D 105, 014034 (2022)

W. Yamada, O. Morimatsu, T. Sato, Phys. Rev. Lett. 129, 192001 (2022)

Analytic structure of S-matrix and shape of poles:

Energy Region	Structure of S-matrix	Shape
Distant from threshold	Trivial ('flat') in Energy	Breit-Wigner O
Near threshold	Non-trivial in Energy	Breit-Wigner X

Objective:

Clarify analytic stucture of 2, 3-channel S-matrix: draw a 'map' of the S-matrix Near-threshold spectrum decomposition & extraction of pole properties

Uniformization: mapping the non-trivial analytic structure of S-matrix
 Mittag-Leffler Expansion: pole expansion of meromorphic functions

Uniformization

Uniformization

'Multi-sheeted' Riemann surface (e.g. Energy-parameterization)

Conformal Map

Uniformized Plane

Trivial surface (as much as possible), entire or partial region of a complex plane

- Analytic structure preserved
- Globally 'flat' nature (constant curvature) → clarifies "distance"

Example: Single-channel S-matrix 2-body, RH cuts and poles

Mittag-Leffler Expansion

Mittag-Leffler Expansion: Pole expansion of meromorphic functions

Corollary from Mittag-Leffler Theorem,

$$F(z) : \text{meromorphic}, \qquad \sum_{n} |r_{n}| / |z_{n}|^{m+1} : \text{finite} \qquad z_{n}, r_{n} : \text{pole position, residue}$$

$$F(z) = \boxed{z^{m} \sum_{n} \frac{z_{n}^{-m} r_{n}}{z - z_{n}}}_{\text{Subtraction terms}} + \underbrace{E(z)}_{\text{Subtraction terms}}$$
• Example: $\cot z = \sum_{n=-\infty}^{\infty} \frac{1}{z - n\pi}$ Im k
• Example: $\cot z = \sum_{n=-\infty}^{\infty} \frac{1}{z - n\pi}$ Im k
• Single-channel S-matrix
Mittag-Leffler Expansion by momentum k
J. Humblet, L.Rosenfeld, Nucl. Physics 26 (1961)
D. Ramírez Jiménez, N. Kelkar, Annals of Physics 396, 18 (2018)
$$A(k) = k^{m} \sum_{n} \left[\frac{k_{n}^{-m} r_{n}}{k - k_{n}} + \frac{(-k_{n}^{*})^{-m} r_{n}^{*}}{k + k_{n}^{*}} \right] + Q(k)$$

Decomposition of the Spectrum: single-channel

Resonant-state Expansion of the Resolvent

T. Berggren, P. Lind, Phys. Rev. C 47, 768 (1993)

Riemann Sphere representation of the 2-channel S-matrix

RS of 2-channel S-matrix 2-body, RH cuts and poles

• 4-sheeted √s-plane: [tt], [bt], [tb], [bb]

Riemann Sphere representation of the 2-channel S-matrix

Mittag-Leffler Expansion on the Riemann Sphere

2-channel Mittag-Leffler Expansion $A(z) = \sum_{i} \frac{r_i}{z - z_i} + (\text{subtraction})$ W. Y., O.M., PRC 102, 055201 (2020) Unitarity of the S-matrix:

 $S(-z^*)=S(z)^*$

Symmetric poles about Im *z*-axis → appropriate threshold behavior

Lone pole-pair contribution:

$$A_n = \frac{r_n}{z - z_n} - \frac{r_n^*}{z + z_n^*}$$

$$\operatorname{Im} A_n(z) = \begin{cases} 0, & (\sqrt{s} < \epsilon_1) \\ -\operatorname{Im} \frac{2r_n}{(z_n - i)^2} \underbrace{q_1}{\Delta} + O(q_1^2), & (\sqrt{s} > \epsilon_1) \end{cases}$$

 $\operatorname{Im} A_n(z) =$

$$\begin{cases} \operatorname{Im} \frac{2r_n}{1-z_n^2} - \operatorname{Re} \frac{4r_n z_n}{(1-z_n^2)^2} \underbrace{\overline{q_2}}{\Delta} + O(\overline{q_2}^2), \quad (\sqrt{s} < \epsilon_2) \\ \operatorname{Im} \frac{2r_n}{1-z_n^2} - \operatorname{Im} \frac{2r_n(1+z_n^2)}{(1-z_n^2)^2} \underbrace{\overline{q_2}}{\Delta} + O(q_2^2), \quad (\sqrt{s} > \epsilon_2) \end{cases}$$

Mittag-Leffler Expansion on the Riemann Sphere

Lineshapes: Pole at upper threshold

Wren A. Yamada, Osamu Morimatsu, Toru Sato, Koichi Yazaki Phys. Rev. D 105, 014034 (2022)

Resonance: [bt]_, [bb]_sheet, "Threshold Cusp": [tb], sheet

• 'Peak position', 'width' = closest physical point, and its distance $on z \neq Re E$, Im E

Flatté Formula on the Riemann Sphere

Flatté Formula

S. M. Flatté, Phys. Lett., B63, 224 (1976)

$$A_{11} = \frac{-\gamma_1 k_1}{E - m + i\gamma_1 k_1 + i\gamma_2 k_2}$$

- Always contain 2 pair of poles: one on [tb]/[bt], the other on [bb]-sheet
- At inelastic threshold: complex scattering length, complex effective range $\rightarrow 4$ parameters (Flatté has 3. Leading to additional constraint $|z_1z_2| = 1$)

Uniqueness of MLE Pole Decomposition

- Mittag-Leffler Expansion: Pole decomposition on the uniformized plane
- 2-channel uniformization plane: non-unique
 Smooth bijective mapping CP¹ → CP¹ induces new uniformization plane

$$Aut(\mathbb{CP}^{1}) \cong PGL(2,\mathbb{C})$$
$$z \mapsto w = \frac{\alpha z + \beta}{\gamma z + \delta}, \text{ where, } det \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \neq 0$$

Question: Is the pole decomposition on z-plane and w-plane identical?

Ex: $\zeta = 1/Z$ $z(\zeta)$: "north pole" ("south pole") projection of Riemann Sphere $\frac{r_n^{[Z]}}{z-z_n} = -r_n^{[Z]} \frac{\zeta\zeta_n}{\zeta-\zeta_n} = \frac{r_n^{[\zeta]}}{\zeta-\zeta_n} \frac{\zeta}{\zeta-\zeta_n} = \underbrace{\frac{r_n^{[\zeta]}}{\zeta-\zeta_n} + \frac{r_n^{[\zeta]}}{\zeta}}_{Pole \text{ term on } \zeta}$ Pole term has indefiniteness of a constant fixed by imposing boundary condition: $A_n \to 0$ as approaching the infinity point on physical sheet

■ MLE Pole decomposition unique under $CP^1 \rightarrow CP^1$ transformations

Uniqueness of MLE Pole Decomposition

Non-algebraic mapping $CP^1 \rightarrow C/Z$: "Cylinder" representation

$$\eta \mapsto \omega = \int_0^{\eta} \frac{d\zeta}{1+\zeta^2} = \arctan \eta \ (\eta \neq \pm i)$$

- Periodicity: $A(\omega + \pi \mathbb{Z}) = A(\omega)$
- Mittag-Leffler Expansion:

$$\begin{aligned} \mathsf{A}(\omega) &= \sum_{n} r_{n} \left[\frac{1}{\omega - \omega_{n}} + \underbrace{\sum_{m \neq 0} \frac{1}{\omega - \omega_{n} + m\pi}}_{\text{Orrections}} \right] = \sum_{n} \underbrace{r_{n} \operatorname{cot}(\omega - \omega_{n})}_{\text{Pole term}} \\ \frac{r_{p}^{[\eta]}}{\eta - \eta_{p}} &= \frac{(1 + \tan^{2} \omega_{p}) r_{p}^{[\omega]}}{\tan \omega - \tan \omega_{p}} \\ &= r_{p}^{[\omega]} \frac{1 + \tan \omega \tan \omega_{p} - \tan \omega_{p}(\tan \omega - \tan \omega_{p})}{\tan \omega - \tan \omega_{p}} \\ &= r_{p}^{[\omega]} \operatorname{cot}(\omega - \omega_{p}) - r_{p}^{[\omega]} \tan \omega_{p}. \end{aligned}$$

- MLE pole decomposition is unique under many different uniformization planes
- Obtain same results when fitting observables by a truncated MLE regardless of the choise of the uniformization plane (At least for CP¹, C/Z)

C/Z

[bbt]

Wren Yamada, Osamu Morimatsu, PRC 103, 045201

$\blacksquare \gamma p \to K^* \pi \Sigma$

K. Moriya, et al. CLAS, PRC 87, 035206 (2013)

$\blacksquare K^- p \to K^- p, \bar{K}^0 n, \pi^{\pm} \Sigma^{\mp}$

Abrams et al. Phys. Rev. 139, B454 (1965), Bangerter et al. Phys. Rev. D 23, 1484 (1981), Ciborowski et al. J. Phys. G: Nucl. Phys. 8, 13 (1982),

Csejthey-Barth et al. Phys.Lett. 16, 89 (1965), Humphrey et al. Phys. Rev. 127, 1305 (1962) Mast et al. Phys. Rev. D 14, 13 (1976), Sakitt et al. Phys. Rev. 139, B719 (1965)

Sphere of 2-channel system: πΣ, K̄N

 3-pole Mittag-Leffler Expansion, common poles

$$\frac{d\sigma^{(n\Sigma)}}{dm} = \operatorname{Im} \sum_{n=1}^{3} \left[\frac{C_n^{(n\Sigma)}}{z - z_n} - \frac{C_n^{(n\Sigma)*}}{z + z_n^*} \right],$$
$$\sigma^{(if)} = \frac{k_f}{k_i} \operatorname{Im} \sum_{n=1}^{3} \left[\frac{C_n^{(if)}}{z - z_n} - \frac{C_n^{(if)*}}{z + z_n^*} \right]$$

14/38

 $\chi^2_{/dof} = 1.18$

Chiral unitary calculation

Y. Ikeda, T. Hyodo and W. Weise, Phys. Lett. B 706, 63 (2011)
 Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A 881, 98 (2012)
 Z.-H. Guo and J. Oller, Phys. Rev. C 87, 3, 035202 (2013)
 M. Mai and U.-G. Meißner, Eur. Phys. J. A 51, 3, 30 (2015)

approach	pole 1 [MeV]	pole 2 [MeV]
Refs. [14, 15], NLO	$1424^{+7}_{-23} - i \ 26^{+3}_{-14}$	$1381^{+18}_{-6} - i \ 81^{+19}_{-8}$
Ref. [17], Fit II	$1421^{+3}_{-2} - i \ 19^{+8}_{-5}$	$1388^{+9}_{-9} - i \ 114^{+24}_{-25}$
Ref. $[18]$, solution $#2$	$1434^{+2}_{-2} - i \ 10^{+2}_{-1}$	$1330^{+4}_{-5} - i \ 56^{+17}_{-11}$
Ref. [18], solution #4	$1429^{+8}_{-7} - i \ 12^{+2}_{-3}$	$1325^{+15}_{-15} - i \ 90^{+12}_{-18}$

Z(3900)

M. Ablikim et al., Phys. Rev. Lett. 110, 252001 (BESIII) M. Ablikim et al., Phys. Rev. Lett. 112, 022001 (BESIII) Z. Q. Liu et al., Phys. Rev. Lett. 110, 252002 (Belle)

HALQCD: $πJ/ψ-ρη_c-D\bar{D}^*$, s-wave, (2+1)-flavor, m_{π} =410-700 MeV Y. Ikeda, et.al., Phys. Rev. Lett. 117, 242001 (2016)

Case	[ttb]	[tbb]	[btb]
I	-146(112)(108) - i 38 (148)(32) -93(55)(21) - i 9(25)(7)	-177(116)(61) - i 175 (30)(22)	-369(129)(102) - i 207 (61)(20)
п	-102(84)(45) - i 14(11)(7)	-141(92)(64) - i 151 (149)(132)	-322(141)(111) - i 114 (96)(75)
ш	-59(67)(11) - i 3(12)(1) -100(48)(29) -i 7(37)(17)	-127(52)(43) -i 199	-356(108)(28) -i 277
	-53(30)(5) -i 2(11)(3)	(44)(28)	(138)(93)

Z(3900)

■ HALQCD poles on the $\pi J/\psi - \bar{D}D^*$ sphere (m_{π} = 411 MeV)

TABLE II. The uniformization variables, z_p , and the scaled energy, e_p , for S-matrix poles, 1–5 (Im $e_p < 0$), given in Ref. [20], and for their conjugate poles, 1*–5* (Im $e_p > 0$), not given in Ref. [20]. Also shown is the sheet on which each pole is positioned.

	$1, 1^{*}$	2, 2*	3, 3*	4,4*	5,5*
Z _p	$\pm 1.11 - 0.95i$	$\mp 0.74 - 0.53i$	$\mp 0.86 - 0.45i$	$\mp 0.65 - 0.54i$	$\pm 0.79 - 1.34i$
e _p	$0.60 \mp 0.41i$	$0.66 \pm 0.09i$	$0.79 \pm 0.02i$	$0.60 \mp 0.17i$	$0.16 \mp 0.44i$
Sheet	[bbb]	[<i>ttb</i>]	[<i>ttb</i>]	[<i>tbb</i>]	[btb]

Z(3900)

Wren A. Yamada, Osamu Morimatsu, Toru Sato, Koichi Yazaki Phys. Rev. D 105, 014034 (2022)

Separable potential model: $\pi J/\psi - DD^*$

(HALQCD inspired)

Enhanced "threshold cusp" structure at DD* threshold from poles 2*, 3* (pole on [tb],)

Analytic Structure of the RS of 3-channeled S-matrix

RS of the 3-channel S-matrix: 2-body, RH cuts and poles

• 2^3 =8-sheeted \sqrt{s} -plane [ttt], [btt], [tbt], [bbt], [ttb], [bbb], [tbb], [btb]

e.g. $[ttb]_{+}$ means $Im q_1 > 0$, $Im q_2 > 0$, $Im q_3 < 0$ and $Im\sqrt{s} > 0$

Analytic Structure of the RS of 3-channeled S-matrix

2-sheeted z_{12} -plane (z-plane using channel mass ϵ_1, ϵ_2)

$$q_{1} = \frac{\Delta_{12}}{2} \left[z_{12} + 1/z_{12} \right], \quad q_{2} = \frac{\Delta_{12}}{2} \left[z_{12} - 1/z_{12} \right], \quad q_{3} = \frac{\Delta_{12}}{2z_{12}} \underbrace{\sqrt{(1 - z_{12}^{2}\gamma^{2})(1 - z_{12}^{2}/\gamma^{2})}}_{\text{solution}}, \quad \left(\gamma = \frac{\sqrt{\varepsilon_{3}^{2} - \varepsilon_{1}^{2}} + \sqrt{\varepsilon_{3}^{2} - \varepsilon_{2}^{2}}}{\Delta_{12}} \right)$$

W.Y. O.M. T.S. arXiv:2203.17069 [hep-ph], Fig.1

(楕円積分と楕円関数 おとぎの国の歩き方)

3-channel S-matrix has the structure of a Torus, fundamentally different from the 2-channel case (Riemann Sphere)!

> H. Cohn, Conformal mapping on Riemann surfaces (Courier Corporation, 2014) H. A. Weidenmüller Ann. Phys. (N.Y.) 28. 60 (1964)

R. G. Newton, Scattering Theory of Waves and Particles (Springer, 1982)

Torus representation of the 3-channel S-matrix

W. Yamada, O. Morimatsu, T. Sato, Phys. Rev. Lett. 129, 192001 (2022)

3-channel Uniformized variable: z

$$z[\tau] = \frac{1}{4K(k)} \underbrace{\int_{0}^{\gamma/z_{12}} \frac{d\xi}{\sqrt{1 - \xi^2}\sqrt{1 - k^2\xi^2}}}_{\text{elliptic integral}}.$$

$$k = \frac{1}{\gamma^2}, K(k) = \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{1 - k^2\sin^2\theta}}, \tau = \frac{K(\sqrt{1 - k^2})}{2K(k)}$$

$$\gamma = (\sqrt{\epsilon_3^2 - \epsilon_1^2} + \sqrt{\epsilon_3^2 - \epsilon_2^2})/\sqrt{\epsilon_2^2 - \epsilon_1^2}$$

Double-periodicity

 $2\omega_1 = 1$, $2\omega_2 = \tau$

Mittag-Leffler Expansion on the Torus

Double Periodicity

$$A(z) = \sum_{z_i \in \Lambda^*} \left[\frac{r_i}{z - z_i} + \sum_{m, n \neq 0} \frac{r_i}{z - z_i - \Omega_{mn}} \right] + (\text{subtractions})$$

 Λ^* : fundamental period parallelogram, $\ \Omega_{mn}$: lattice points

$$= C_0 + C_1 z + \sum_{z_i \in \Lambda^*} r_i \zeta(z - z_i)$$

Weierstrass Zeta function

$$\zeta(z) = \frac{1}{z} + \sum_{m,n \neq 0} \left[\frac{1}{z - \Omega_{mn}} + \frac{1}{\Omega_{mn}} + \frac{z}{\Omega_{mn}^2} \right] = \frac{1}{z} + \sum_{m,n \neq 0} \left[\frac{z^2}{(z - \Omega_{mn}) \Omega_{mn}^2} \right]$$

Boundary condition: A → 0 at infinite energy

$$C_0 = -\sum_{z_i \in \Lambda^*} r_i \, \zeta(-z_i)$$

Mittag-Leffler Expansion under the Torus representation

$$A(z) = \sum_{z_i \in \Lambda^*} \left[r_i \left[\zeta(z - z_i) + \zeta(z_i) \right] \right], \quad \sum_{z_i \in \Lambda^*} r_i = \frac{1}{2\pi i} \oint_{\partial \Lambda^*} dz A(z) = 0$$

Mittag-Leffler Expansion on the Torus

 $r_i^{[i]}$

Mittag-Leffler Expansion on the Torus with periods $(1, \tau)$

$$A(z) = \sum_{z_i \in \Lambda^*} \left[r_i \left[\zeta(z - z_i; \tau) + \zeta(z_i; \tau) \right] \right]$$

pole term, τ dependence?

Torus does not have one-to-one correspondence with τ modular group SL(2,Z) induces an equivalent class of τ representing the same torus

$$\begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix} \mapsto \begin{bmatrix} \omega'_1 \\ \omega'_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \end{bmatrix}, \quad a, b, c, d \in \mathbb{Z}, \quad det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = 1$$

$$z \mapsto z' = (c\tau + d)^{-1}z$$

$$\zeta(z; \tau) = \frac{1}{z} - \sum_{k=1}^{\infty} \mathcal{G}_{2k+2}(\tau) z^{2k+1} \mapsto \zeta(z; \tau') = (c\tau + d)\zeta(z; \tau)$$

$$\mathcal{G}_{2k+2}: \text{ Eisenstein series with weight } 2k + 2$$

$$\begin{bmatrix} z \\ z \\ z \\ z \end{bmatrix} \mapsto \frac{r_i^{[\tau']}}{c\tau + d} (c\tau + d) \begin{bmatrix} \zeta(z' - z'_i; \tau') + \zeta(z'_i; \tau') \end{bmatrix}$$

Pole decomposition of MLE is independent of the choice of τ

$$C = 45.60 \,[\text{GeV}^{-2}]$$

$C = 60.00 \, [\text{GeV}^{-2}]$

$$C = 80.00 \, [\text{GeV}^{-2}]$$

Pole Trajectory of Pole 1 & Pole 2 on the $\Lambda\Lambda$ -NΞ-ΣΣ Torus

 Smooth transition of pole position and peak structure: Especially a smooth transition from a resonance pole on [btt]_ to pole with positive imaginary complex energy on [tbt], manifested as a 'cusp-like' shape

[■] 'Peak position' and 'width': closest physical point, distance on torus ≠ Re E_p , Im $E_{p/R}$

Model: $I = 1 \pi \Lambda - \pi \Sigma - \bar{K} N$

Chiral-Unitary Model LO:
 I = 1 πΛ-πΣ-K̄N

E MLE Fit (preliminary)

- $\equiv \Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$ Belle, M. Sumihama et. al., PRL 122, 072501 (2019)
- Torus of 3-channel system: $\pi^+\Xi^-$, $\bar{K}^0\Lambda$, $\bar{K}\Sigma$
- 3-pole Mittag-Leffler Expansion

$$\mathsf{A}(z) \approx \sum_{n=1}^{3} r_n \left[\left(\zeta(z-z_n) + \zeta(z_n) \right) \right] + r_n^* \left[\zeta(z-z_n^*) - \zeta(z_n^*) \right]$$

P_c MLE Fit (preliminary)

- $\Lambda_b^0 \rightarrow p J/\psi K^-$ LHCb, R. Aaij et al. Phys. Rev. Lett. 122, 222001 (2019)
- Torus of 3-channel system: pJ/ψ , $\Sigma_c^+ \overline{D}^0$, $\Sigma_c^+ \overline{D}^{*0}$
- 4-pole Mittag-Leffler Expansion

$$A(z) \approx \sum_{n=1}^{4} r_n \left[\left(\zeta(z - z_n) + \zeta(z_n) \right) \right] + r_n^* \left[\zeta(z - z_n^*) - \zeta(z_n^*) \right]$$

	Pole #1	Pole # 2	Pole # 3	Pole # 4
z	$0.25 - 0.23i \pm 0.01 \pm 0.02i$	$0.253 - 0.045i \pm 0.006 \pm 0.006i$	$0.30 \pm 0.03i \pm 0.02 \pm 0.02i$	$0.000 + 0.34i \pm 0.005 \pm 0.03i$
ε_p [GeV]	$4.319 - 0.001 i \pm 0.004 \pm 0.002 i$	$4.442 - 0.002i \pm 0.004 \pm 0.004i$	$4.47 \pm 0.03i \pm 0.02 \pm 0.02i$	$3.5 \pm 0.01i \pm 0.5 \pm 0.08i$
r_p^z [GeV ⁻¹]	$-2-5i\pm 4\pm 4i$	$0.3 - 0.6i \pm 0.8 \pm 0.9i$	$50-20i\pm20\pm10i$	$-80 \pm 120i \pm 2000 \pm 20i$
r_p^{ε}	$0.8 - 0.8i \pm 0.8 \pm 0.8i$	$-0.4 - 0.3i \pm 0.6 \pm 0.6i$	$60+20i\pm20\pm20i$	$-2100 - 1000i \pm 600 \pm 30000i$

P_c MLE Fit (preliminary)

- $\Lambda_b^0 \rightarrow p J/\psi K^-$ LHCb, R. Aaij et al. Phys. Rev. Lett. 122, 222001 (2019)
- Torus of 3-channel system: pJ/ψ , $\Sigma_c^* \overline{D}^0$, $\Sigma_c^* \overline{D}^{*0}$
- 4-pole Mittag-Leffler Expansion

	Pole # 1	Pole # 2	Pole # 3	Pole # 4	
z	$0.25 - 0.23i \pm 0.01 \pm 0.02i$	$0.253 - 0.045i \pm 0.006 \pm 0.006i$	$0.30 \pm 0.03i \pm 0.02 \pm 0.02i$	$0.000 + 0.34i \pm 0.005 \pm 0.03i$	
ε_p [GeV]	$4.319 - 0.001i \pm 0.004 \pm 0.002i$	$4.442 - 0.002i \pm 0.004 \pm 0.004i$	$4.47 \pm 0.03i \pm 0.02 \pm 0.02i$	$3.5 \pm 0.01i \pm 0.5 \pm 0.08i$	
r_p^{z} [GeV ⁻¹]	$-2-5i\pm 4\pm 4i$	$0.3 - 0.6i \pm 0.8 \pm 0.9i$	$50-20i\pm20\pm10i$	$-80 \pm 120i \pm 2000 \pm 20i$	
r_p^{ε}	$0.8 - 0.8i \pm 0.8 \pm 0.8i$	$-0.4 - 0.3i \pm 0.6 \pm 0.6i$	$60+20i\pm20\pm20i$	$-2100 - 1000i \pm 600 \pm 30000i$	20

Summary

- Non-trivial analytic structure of S-matrix in energy near the thresholds Breit-Wigner does not reflect the proper structure
- Uniformization: clarification pole position ↔ spectrum 2-channel S-matrix: Sphere, 3-channel S-matrix: Torus
- Mittag-Leffler Expansion
 Pole Expansion accounting the non-trivial analytic structure of S-matrix
 For 3-channel case, double-periodicity of torus has to be considered
- Line shapes: Enhanced structure in spectrum → Existence of nearby poles
 - Smooth transition of peak structure (under smooth transition of pole)
 - 'Resonances' ([bt(t)]_,[bb(t)]_,[bb(b)]_),

'Cusp'-shaped enhancements ([tb(t)],,[(t)tb],)

- Peak position \approx closest physical point on uniformized plane, \neq Re E_{pole}
- Application of Mittag-Leffler Expansion:
 - Λ(1405): Primary pole on [*bt*]-sheet, *E_p* > 1420 > 1405 MeV
 - *Z*(3900): Possible contribution from poles on [(*t*)*tb*],
 - 3-channel Mittag-Leffler Expansion to Ξ , P_c

Thank You!!

Thank You!!

Supplementary Materials

Mittag-Leffler Expansion to Λ (1405): 3 pole-terms

Mittag-Leffler Expansion to Λ (1405): 3 pole-terms

Supplementary Materials

TABLE IV. Results for the residues of the invariant-mass distributions of $\pi^0 \Sigma^0$ in units of μb /GeV in nine bins of center-of-mass energy W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV)	Pole 1	Pole 2	Pole 3
1.95-2.05	$-0.6515 + 0.3471i \pm 0.2256 \pm 0.1211i$	$0.5316 - 1.2492i \pm 0.7596 \pm 1.3581i$	$1.3537 - 0.6183i \pm 2.7107 \pm 1.0427i$
2.05-2.15	$-0.3179 + 0.5296i \pm 0.0374 \pm 0.06i$	$-0.3174 - 0.6043i \pm 0.1764 \pm 0.1197i$	$-0.011 + 0.0019i \pm 0.0104 \pm 0.0121i$
2.15-2.25	$-0.1085 + 0.3535i \pm 0.0209 \pm 0.0333i$	$-0.0763 + 0.0737i \pm 0.1051 \pm 0.0997i$	$-0.0015 - 0.009i \pm 0.0108 \pm 0.0099i$
2.25-2.35	$-0.053 + 0.2798i \pm 0.0154 \pm 0.0245i$	$0.0799 + 0.2387i \pm 0.0854 \pm 0.0871i$	$0.0081 - 0.0087i \pm 0.0086 \pm 0.0082i$
2.35-2.45	$0.0027 + 0.2895i \pm 0.0139 \pm 0.0227i$	$0.1853 \pm 0.2406i \pm 0.0828 \pm 0.0885i$	$0.0052 - 0.001i \pm 0.0079 \pm 0.0073i$
2.45-2.55	$0.0223 + 0.2323i \pm 0.0097 \pm 0.0164i$	$0.1871 + 0.2054i \pm 0.0618 \pm 0.0691i$	$-0.0038 - 0.0032i \pm 0.0061 \pm 0.0063i$
2.55-2.65	$0.0088 \pm 0.1641i \pm 0.0084 \pm 0.0141i$	$0.1101 + 0.1044i \pm 0.0479 \pm 0.0491i$	$-0.0051 - 0.0098i \pm 0.0054 \pm 0.0042i$
2.65-2.75	$-0.0018 + 0.1221i \pm 0.0076 \pm 0.0126i$	$0.0883 + 0.1107i \pm 0.0414 \pm 0.0428i$	$-0.0026 - 0.0058i \pm 0.0047 \pm 0.0038i$
2.75-2.85	$0.0089 + 0.094i \pm 0.0058 \pm 0.009i$	$0.0417 + 0.0439i \pm 0.0317 \pm 0.0294i$	$0.0018 - 0.0052i \pm 0.0025 \pm 0.0032i$

TABLE II. Results for the residues of the invariant-mass distributions of $\pi^+\Sigma^-$ in units of μ b/GeV in nine bins of center-of-mass energy W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV)	Pole 1	Pole 2	Pole 3
1.95-2.05	$-0.3486 + 0.3026i \pm 0.0154 \pm 0.0149i$	$0.2487 - 0.122i \pm 0.053 \pm 0.0342i$	$-0.0016 - 0.0029i \pm 0.0013 \pm 0.0014i$
2.05-2.15	$-0.3809 \pm 0.3245i \pm 0.0136 \pm 0.0135i \\ -0.2662 \pm 0.1989i \pm 0.0121 \pm 0.0096i$	$\begin{array}{c} 0.1431 - 0.1877i \pm 0.0442 \pm 0.0223i \\ 0.0294 - 0.0919i \pm 0.028 \pm 0.0183i \end{array}$	$-0.0175 - 0.00811 \pm 0.0034 \pm 0.0023i$ $-0.0108 - 0.0133i \pm 0.0029 \pm 0.0021i$
2.25-2.35	$-0.2539 + 0.208i \pm 0.013 \pm 0.0106i$ $-0.2016 + 0.2142i + 0.0131 \pm 0.0104i$	$0.0165 - 0.0339i \pm 0.0318 \pm 0.0227i$ $0.0864 - 0.0442i \pm 0.0306 \pm 0.0189i$	$0.0014 - 0.0122i \pm 0.0023 \pm 0.0021i$ $-0.004 - 0.0105i \pm 0.0021 \pm 0.0019i$
2.45-2.55	$-0.1595 + 0.1369i \pm 0.0097 \pm 0.008i$ $-0.1672 + 0.0025i \pm 0.0097 \pm 0.008i$	$0.0423 - 0.0179i \pm 0.0219 \pm 0.0151i$	$-0.0038 - 0.0091i \pm 0.0018 \pm 0.0017i$
2.55-2.65 2.65-2.75	$-0.1072 \pm 0.0925i \pm 0.008 \pm 0.006i$ $-0.0891 \pm 0.057i \pm 0.0065 \pm 0.0046i$	$\begin{array}{c} 0.025 - 0.0066i \pm 0.0169 \pm 0.0119i \\ 0.0189 + 0.0133i \pm 0.0139 \pm 0.01i \end{array}$	$-0.0043 - 0.0065i \pm 0.0016 \pm 0.0014i -0.0039 - 0.0062i \pm 0.0014 \pm 0.0012i$
2.75-2.85	$-0.0657 + 0.0466i \pm 0.0056 \pm 0.0042i$	$0.0161 - 0.0066i \pm 0.0115 \pm 0.008i$	$-0.0053 - 0.0051i \pm 0.0013 \pm 0.0011i$

TABLE III. Results for the residues of the invariant-mass distributions of $\pi^-\Sigma^+$ in units of μ b/GeV in nine bins of center-of-mass energy W by the uniformized Mittag-Leffler expansion with m = 3.

W (GeV)	Pole 1	Pole 2	Pole 3
1.95-2.05	$-0.2247 + 0.542i \pm 0.0319 \pm 0.0262i$	$0.358 - 0.2978i \pm 0.0864 \pm 0.0491i$	$-0.0013 - 0.0038i \pm 0.0017 \pm 0.0017i$
2.05-2.15	$-0.1119 + 0.7353i \pm 0.035 \pm 0.0301i$	$0.0861 - 0.542i \pm 0.0823 \pm 0.0456i$	$-0.0165 - 0.0155i \pm 0.0035 \pm 0.0033i$
2.15-2.25	$0.1962 + 0.4702i \pm 0.02 \pm 0.0162i$	$0.2154 - 0.1012i \pm 0.0524 \pm 0.0325i$	$0.002 - 0.0171i \pm 0.0027 \pm 0.0026i$
2.25-2.35	$0.0662 + 0.3112i \pm 0.0144 \pm 0.0129i$	$0.1313 - 0.0568i \pm 0.0374 \pm 0.0233i$	$0.0081 + 0.001i \pm 0.0014 \pm 0.002i$
2.35-2.45	$-0.0017 + 0.3091i \pm 0.0116 \pm 0.0116i$	$0.2839 + 0.0335i \pm 0.0461 \pm 0.0327i$	$0.0028 - 0.0026i \pm 0.0018 \pm 0.0016i$
2.45-2.55	$-0.0119 + 0.2237i \pm 0.009 \pm 0.0088i$	$0.2132 + 0.017i \pm 0.0346 \pm 0.0236i$	$0.0004 - 0.006i \pm 0.0014 \pm 0.0012i$
2.55-2.65	$-0.0189 + 0.1726i \pm 0.0075 \pm 0.0073i$	$0.1377 - 0.0008i \pm 0.0248 \pm 0.0162i$	$-0.0006 - 0.0038i \pm 0.001 \pm 0.0011i$
2.65-2.75	$-0.0123 + 0.1263i \pm 0.0062 \pm 0.0055i$	$0.1136 - 0.0044i \pm 0.02 \pm 0.0131i$	$-0.0029 - 0.0035i \pm 0.001 \pm 0.0009i$
2.75-2.85	$-0.0173 + 0.0932i \pm 0.0055 \pm 0.005i$	$0.0859 - 0.0121i \pm 0.016 \pm 0.0096i$	$-0.0021 - 0.0028i \pm 0.0009 \pm 0.0007i$

Optical Theorem

$$\pi |T_{\chi}|^{2} = \sum_{IJ} \langle \phi | F_{I}^{\dagger} G_{I}^{\dagger} (G_{I0}^{-1})^{\dagger} | X \rangle \operatorname{Im} G_{0}^{\chi} \langle X | G_{J0}^{-1} G_{J} F_{J} | \phi \rangle$$

$$= \sum_{IJ} \langle \phi | F_{I}^{\dagger} G_{I}^{\dagger} (G_{I0}^{-1})^{\dagger} P_{X} \operatorname{Im} G_{0} P_{X} G_{J0}^{-1} G_{J} F_{J} | \phi \rangle \qquad P_{X} : \text{ projection operator onto } |X \rangle$$

$$= \langle \phi | \sum_{I} (F_{I}^{\dagger} G_{I}^{\dagger} (G_{I0}^{-1})^{\dagger}) P_{X} \operatorname{Im} G_{0} P_{X} \sum_{J} (G_{J0}^{-1} G_{J} F_{J}) | \phi \rangle$$

$$= \langle \phi | F^{\dagger} G^{\dagger} (G_{0}^{-1})^{\dagger} P_{X} \operatorname{Im} G_{0} P_{X} G_{0}^{-1} G_{I} F | \phi \rangle \qquad G_{0}^{-1} G_{I} F \equiv \sum_{I} G_{I0}^{-1} G_{I} F_{I}$$

$$= \operatorname{Im} \langle \phi | F^{\dagger} G^{\dagger} (G_{0}^{-1})^{\dagger} P_{X} G_{0} P_{X} G_{0}^{-1} G_{I} F | \phi \rangle$$

G: Green's operator, I, J: channel index

\$\lapha\$ \$\phi\$ | F[†]G[†](G₀⁻¹)[†]P_χG₀P_χG₀⁻¹GF |φ\$ inherits the analytic properties (not all) of the Green's function

 $SO(3) \rightarrow block diagnalizable$

$$\hat{A}=\hat{A}_{0}\oplus\hat{A}_{1}\oplus\hat{A}_{2}\cdots$$

$$A(k,\theta,\phi) = \sum_{l,m} A_l(k) Y_{lm}(\theta,\phi) Y_{lm}^{*}(\theta,\phi)$$

global structure of the RS of a_i : same \rightarrow ML-Expansion

$$A_{l} = \frac{2l+1}{k\cot\delta_{l} - ik}, \quad k^{2l+1}\cot\delta_{l} = -\frac{1}{a_{l}} + \frac{1}{2}r_{l}k^{2} + \cdots$$

Lineshape: Example

Model Calculation

T. Nishibuchi, T. Hyodo, Contribution to HYP 2022, e-Print: 2208.14608 [hep-ph]

3-channel MLE 1-pole term: $Arg[r_n] = -0.23\pi$

W. Yamada, O. Morimatsu, T. Sato, Phys. Rev. Lett. 129, 192001 (2022)

TABLE I. Pole positions and residues of the $\Lambda\Lambda \rightarrow \Lambda\Lambda$ elastic scattering amplitude, A_{11} , for cases (a)–(d). The first and second rows are the pole positions, z_i , and residues, r_i , respectively, on the torus. The third row is the complex center-of-mass energy of the pole, $\sqrt{s_i}$, in units of [GeV] and the complex Riemann sheet. The threshold energies, ε_1 , ε_2 , and ε_3 , are 2.231, 2.257, and 2.381 GeV, respectively.

	C (GeV ⁻²)	Pole 1	Pole 2	Pole 3	Pole 4
(a)	40.00	-0.267 <i>i</i> 0.172 <i>i</i> 2.221 [<i>ttt</i>]	-0.496 <i>i</i> -0.154 <i>i</i> 2.200 [<i>btt</i>]	0.5 + 0.043i -0.015 <i>i</i> -1.802 <i>i</i> [<i>ttb</i>]	0.5 – 0.702 <i>i</i> –0.004 <i>i</i> 13.477 <i>i</i> [<i>tbt</i>]
(b)	45.60	-0.371 <i>i</i> 1.750 <i>i</i> 2.231 [<i>btt</i>]	-0.398 <i>i</i> -1.727 <i>i</i> 2.229 [<i>btt</i>]	0.5 + 0.048i -0.018i -1.252i [ttb]	0.5 - 0.700i -0.005 <i>i</i> 11.722 <i>i</i> [<i>tbt</i>]
(c)	60.00	0.177 - 0.392i -0.215 + 0.018i 2.253 - 0.005i [btt]	-0.177 - 0.392i 0.215 + 0.018i 2.253 + 0.005i [btt]	0.5 + 0.060i -0.027 <i>i</i> 0.907 [<i>ttb</i>]	0.5 - 0.697 <i>i</i> -0.009 <i>i</i> 8.657 <i>i</i> [<i>tbt</i>]
(d)	80.00	$\begin{array}{c} 0.271 - 0.402i \\ -0.249 + 0.028i \\ 2.259 + 0.002i \ [tbt] \end{array}$	$\begin{array}{c} -0.271 - 0.402i\\ 0.249 + 0.028i\\ 2.259 - 0.002i \ [tbt] \end{array}$	0.5 + 0.073i -0.038i 1.510 [ttb]	0.5 - 0.691i -0.017 <i>i</i> 6.124i [<i>tbt</i>]