

谷田 聖

(原子力機構先端基礎研究センター)

ELPH研究会 「ハドロン分光に迫る反応と構造の物理」 2022年12月07日

Threshold cusp

- Jump in strength (|amp|²) in the (L+1)th derivative
 In the widest sense, cusp ALWAYS appears at thresholds.
- Practically, cusp appears only in S-wave
- Interesting case is the 1st derivative changes sign, especially from positive to negative
 - Cusp in the narrow sense.
 - In principle, can be distinguished from usual peak by the derivative at the top, but practically there is experimental resolution.
 - Very few identified cases

Belle results:

1. $\Lambda_c \rightarrow pK^-\pi^+$ at the $\Lambda\eta$ threshold 2. At the $\overline{K}N(I = 1)$ threshold

1. Peak structure in $\Lambda_c \rightarrow pK^-\pi^+$

Fit to Breit-Wigner

 Not very good especially near the peak.

 Best χ²/DOF: 308/243

[arXiv:2209.00050, submitted to PRL]

Fit to Flatte

$$\frac{dN}{dm} \propto |f(m) + re^{i\theta}|^2$$

f(m): non-relativistic Flatte $\frac{1}{m - m_f + \frac{i}{2} \left(\Gamma' + \bar{g}_{\Lambda \eta} k\right)}$

- Improved near the peak
- Best χ^2 /DOF: 257/243
 - Better than BW by 7σ

Threshold cusp

• The fit explains the peak as a threshold cusp with nearby $\Lambda(1670)$

→ First identification of a threshold cusp from the spectrum shape

• Obtained $\Lambda(1670)$ parameters are consistent with those measured in $\Lambda_c \rightarrow \Lambda \eta \pi^+$ [Belle, PRD103 (2021)

052005]		Present result	$\Lambda\eta\pi^+$ mode
	Mass	1674.4	1674.3±0.8±4.9
	Width	$50.3 \pm 2.9^{+4.2}_{-4.0}$	36.1 <u>+</u> 2.4 <u>+</u> 4.8

How about other near-threshold exotic hadrons?
 – They may be actually threshold cusps!

2. $\Lambda_c \rightarrow \Lambda \pi^+ \pi^+ \pi^-$

 Cusp candidates are observed in Λπ[±] invariant mass spectra, especially from Λ_c decay in Belle ([arXiv:2211.11151] just submitted to PRL)

2 fitting models

1. Standard Breit-Wigner

$$f_{BW} = \frac{\Gamma/2}{(E - E_{BW})^2 + \Gamma^2/4},$$

2. Dalitz model (cusp) [Czech. J. Phys. B**32**, 1021 (1982)] For $\overline{K}N(I = 1)$ scattering length A=a+ib and decay momentum k/ κ (=|k| below the threshold)

$$f_D = \frac{4\pi b}{(1+kb)^2 + (ka)^2}, E > m_{\bar{K}N}$$
$$= \frac{4\pi b}{(1+\kappa a)^2 + (\kappa b)^2}, E < m_{\bar{K}N},$$

neglecting decay form factor

Fitting results

1. Breit-Wigner

Mode	$E_{BW} [{\rm MeV}/c^2]$	$\Gamma [{ m MeV}/c^2]$	χ^2 / NDF
$\Lambda \pi^+$	1434.3 ± 0.6	11.5 ± 2.8	74.4/68
$\Lambda\pi^{-}$	1438.5 ± 0.9	33.0 ± 7.5	92.3/68

2. Dalitz model (cusp)

Mode	$a[\mathrm{fm}]$	$b[\mathrm{fm}]$	χ^2 / NDF
$\Lambda \pi^+$	0.48 ± 0.32	1.22 ± 0.83	68.9/68
$\Lambda \pi^{-}$	1.24 ± 0.57	0.18 ± 0.13	78.1/68

Dalitz model gives slightly better χ^2 , but the difference is not significant.

Results & discussions

- 1. Breit-Wigner Mass +: $1434.3 \pm 0.6^{+0.9}_{-0.0} \text{ MeV/c}^2$ $-: 1438.5 \pm 0.9^{+0.2}_{-2.5} \text{ MeV/c}^2$ Width +: $11.5 \pm 2.8^{+0.1}_{-5.3} \text{ MeV}$ $-: 33.0 \pm 7.5^{+0.1}_{-23.6} \text{ MeV}$
- Significance 7.5(6.2) σ
- This interpretation suggests an existence of an exotic state, $\Sigma(1435)$.

Results & discussions

- 2. Dalitz (cusp) $a +: 0.48 \pm 0.32^{+0.38}_{-0.01} \text{ fm}$ $-: 1.24 \pm 0.57^{+1.56}_{-0.16} \text{ fm}$ $b +: 1.22 \pm 0.83^{+2.54}_{-0.18} \text{ fm}$ $-: 0.18 \pm 0.13^{+0.00}_{-0.20} \text{ fm}$
- Many theories predict a cusp here.
- Obtained scattering lengths are larger than most theories, but with large uncertainties (Also, form factor is ignored.)

Future plans at J-PARC

E90 for ΣN interaction & Further possibilities

$\Sigma N cusp$

- K⁻(stopped)+d $\rightarrow \Lambda p\pi^-$
- Maybe the cleanest cusp ever seen, but not confirmed.
 - Because the resolution is not enough

J-PARC E27 result

d(π⁺,K⁺) reaction
 at 1.69 GeV/c

 Cannot distinguish "cusp" from usual peak

• Fit with Breit-Wigner (Resolution: $\sigma = 1.4$ MeV) $\Gamma = 5.3^{+1.4+0.6}_{-1.2-0.3}$ MeV

What should we do?

Try even higher resolution

- 1 MeV (FWHM) would be enough to see the cusp shape

- Tagging of the final state is necessary
 - Must be ΛN to derive ΣN (I=1/2) scattering length
 - $-\Sigma N$ (I=3/2) contaminate if not tagged
- J-PARC E90
 - 1 MeV resolution with $d(K^{-},p)$ reaction at $p_{K} \sim 1.4$ GeV/c Thanks to the high resolution of S-2S spectrometer,.
 - Tagging of decay particles by the Hyperon Spectrometer $\rightarrow 4\pi$ acceptance

 $\Sigma N(T=1/2, {}^{3}S_{1})$ SCATTERING LENGTH (THEORY), $A_{s} = a + ib$

Model	J04	J04c	J–A	NSC 97f	NSC 89	ND	NF	NB
a [fm]	3.83	3.63	-2.37	-1.03	2.54	2.06	-1.29	-3.0
b [fm]	3.01	3.09	3.74	2.41	0.26	4.64	3.02	1.8
Model	chiral EFT (NLO13)			chiral EFT (NLO19)				
$\Lambda \ [MeV]$	500	550	600	650	500	550	600	650
a [fm]	-2.61	-2.44	-2.27	-2.06	-0.95	-0.98	-2.29	-1.95
b [fm]	2.89	3.11	3.29	3.59	4.77	4.59	3.39	3.38

- a > 0: Attractive
- a < 0: Bound state
- Large ambiguity!! Possibility of a bound state
 - Like deuteron. Could be called as dibaryon
 - Cusp could appear even if the state is bound. \leftarrow due to source size effect.

11

Spectrum shape with Dalitz model

$\Sigma N(T=1/2, {}^{3}S_{1})$ SCATTERING LENGTH (THEORY)

Shallow bound state/cusp:e.g. J-A ($A_{\Sigma} = -2.37 + i3.74 \text{ fm}$)Deeply bound state (~BW):e.g. NB ($A_{\Sigma} = -3.00 + i1.8 \text{ fm}$)No bound state/cusp:e.g. ND ($A_{\Sigma} = 2.06 + i4.64 \text{ fm}$)

E90 setup

SET UP

- **Reaction:** $K^{-}d \rightarrow \Lambda p\pi^{-}$ at **1.4 GeV/c**
- **S-2S**(developed for E70): π^{-} measurements \rightarrow measurement of missing mass spectrum
 - Good mass resolution: ΔM ~ 0.4 MeV (σ), (Δp/p(K18)=3.3×10⁻⁴(FWHM), Δp/p(S-2S)=6.0×10⁻⁴(FWHM))
- HypTPC(developed for E42): Final state (Λp) restriction and background suppression

QF BACKGROUND SUPPRESSION BY HYPTPC

QF BACKGROUND SUPPRESSION BY HYPTPC

Importance of resolution

Can identify cusp?

Possible with σ =0.4 MeV, but not with 2 MeV

Other possibilities?

• Many

- Any peak near a threshold could be a cusp
 - X(3872), Ξ(1620), Ξ(1690), ...
 - We are studying X(3872) case at Belle (II) with treating J/ $\psi\pi\pi$ and D*D channels at the same time.
- At J-PARC
 - E72 can study Λη threshold more precisely in various channels (K^-p, \overline{K}^0 n, $\pi^{\pm}\Sigma^{\mp}$, ...)
 - $-\eta^{(')}N$ cusp with $\pi^{-}p$ ($\rightarrow \eta^{(')}n$) $\rightarrow \pi^{-}p$ elastic scattering as a byproduct of E45
 - Dedicated experiment for $\Lambda \pi \overline{K}N(I = 1)$ cusp.
 - And More

Summary

- Threshold cusp
 - A peak-like structure at a threshold
 - − Shape is (mostly) determined by scattering length
 → A new method to determine scattering length
- In Belle
 - $-\Lambda\eta$ cusp is identified in $\Lambda_{c} \rightarrow pK^{-}\pi^{+}$
 - Another candidate found in $\Lambda\pi$ at the $\overline{K}N$ threshold
- Plan at J-PARC
 - ΛN - ΣN cusp study for ΣN interaction. Bound state?
- Many other possibilities!!
 - Any near-threshold peaks could be threshold cusps