Near-threshold hadron scattering using effective field theory

Tokyo Metropolitan University

Katsuyoshi Sone Tetsuo Hyodo

Background

Exotic hadrons $\Box > T_{cc}, X(3872), f_0(980), a_0, P_c, Z_c$

Internal structure

Scattering lengths a and effective range r

For near-threshold exotic hadrons, channel couplings are important.

Unstable exotic hadron near the threshold of channel 1

Flatté amplitude has been used[1].

Scattering lengths a_F and effective range r_F have been determined by the Flatté amplitude[2].

a and r in more general framework?

[1] R.Aaij et al. [LHCb], Phys. Rev. D 102, no.9, 092005 (2020) [2] V. Baru et al. Eur. Phys. J. A, 23, 523-533 (2005)

Exotic hadron Momentum k(E)2 Momentum p(E)

Flatté amplitude

The Flatté amplitude

$$f^{F} = h(E) \begin{pmatrix} g_{1}^{2} & g_{1}g_{2} \\ g_{1}g_{2} & g_{2}^{2} \end{pmatrix}$$

The Flatté parameters

 g_1^2, g_2^2 : Real coupling constants E_{BW} : Bare energy

The Flatté amplitude has the threshold effect.

$$h(E) = -\frac{1}{2} \frac{1}{E - E_{BW} + i g_2^2 p(E)/2 + i g_1^2 k(E)/2}$$

 f_{11}^F , f_{22}^F can be written as the effective range expansion in k.

$$f_{11}^F, f_{22}^F \propto \left(-\frac{1}{a_F} + \frac{1}{2}r_Fk^2 - ik + O(k^4)\right)^{-1}$$

 a_F : Scattering lengths
 r_F : Effective range

a_F and r_F

We consider near the threshold 1(region II and III).

 $1{\rightarrow}1$ scattering does not occur in region $\,\rm II$.

 $2 \rightarrow 2$ scattering occurs in both region II and III.

[3] A. Esposito et al., Phys. Rev. D 105 (2022) 3, L031503
[1] R. Aaij et al. [LHCb], Phys. Rev. D102, no.9, 092005 (2020)

General form

We consider the two-channel scattering.

• Conservation of probability

Optical theorem with channel couplings

$$f^{-1} = \begin{pmatrix} M_{11}(E) - ik & M_{12}(E) \\ M_{21}(E) & M_{22}(E) - ip \end{pmatrix}$$

Exotic hadron

$$e^{E}$$

 e^{I}
 e^{I

5

 M_{nm} : Analytic functions of E k, p: Momentum

Flatté amplitude : $det(f^F)=0$

Flatté amplitude does not satisfy the optical theorem.

EFT amplitude

As more general framework, we consider the effective field theory(EFT).

The effective field theory(EFT)

Nonrelativistic Contact interaction Two channels

The scattering amplitude derived from EFT[5]

$$f^{EFT}(E) = \left\{ \frac{1}{a_{12}^2} - \left(\frac{1}{a_{22}} + ip(E)\right) \left(\frac{1}{a_{11}} + ik(E)\right) \right\}^{-1} \begin{pmatrix} \left(\frac{1}{a_{22}} + ip(E)\right) & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & \left(\frac{1}{a_{11}} + ik(E)\right) \end{pmatrix}$$

 a_{11}, a_{12}, a_{22} : Three EFT parameters

 f^{EFT} satisfies the optical theorem with channel couplings.

[5]T.D.Cohen et al., Phys. Lett. B 588 (2004) 57-66

f_{11} component

Effective range expansion for f_{11}^{EFT}

$$f_{11}^{EFT} = \frac{\frac{1}{a_{22}} + ip}{\frac{1}{a_{12}^2} - \left(\frac{1}{a_{22}} + ip\right)\left(\frac{1}{a_{11}} + ik\right)}$$

$$= \frac{1}{\left(\frac{1}{\frac{a_{12}^2}{a_{22}} + ip_0a_{12}^2} - \frac{1}{a_{11}}\right) - \frac{1}{2\left(\frac{a_{12}}{a_{22}} + ip_0a_{12}\right)^2 p_0}} k^2 + O(k^4) - ik}$$

$$a_{EFT} = \frac{a_{11}a_{12}^2(1 + ip_0a_{22})}{a_{12}^2(1 + ip_0a_{22}) - a_{11}a_{22}}} \qquad r_{EFT} = -\frac{i}{p_0} \left\{\frac{a_{22}}{a_{12}(1 + ip_0a_{22})}\right\}^2$$

 f_{11}^{EFT} can be written as the effective range expansion in k.

f_{22} component

Effective range expansion for f_{22}^{EFT}

The correct scattering length and effective range must be determined by f_{11} . The validity of a_F and r_F determined in f_{22}^F in Flatté amplitude

Analytic comparison

We compare a_F, r_F with a_{EFT}, r_{EFT} , with EFT parameters.

Matching of f_{22} at small k.

Analytic comparison

 a_{EFT} and r_{EFT} in EFT amplitude

$$a_{EFT} = \frac{a_{11}a_{12}^2(1+ip_0a_{22})}{a_{12}^2(1+ip_0a_{22}) - a_{11}a_{22}} \qquad r_{EFT} = -\frac{i}{p_0} \left\{ \frac{a_{22}}{a_{12}(1+ip_0a_{22})} \right\}^2$$
$$p_0 : \text{channel 2 momentum at } E = 0$$

 a_F and r_F in Flatté amplitude with EFT parameters a_{11}, a_{12}, a_{22}

$$a_F = \frac{a_{11}^2 a_{12}}{a_{12}^2 (1 + ip_0 a_{22}) - a_{11} a_{22}} \qquad r_F = -2a_{11} - i\frac{a_{12}^2}{p_0 a_{11}^2}$$

 a_F and r_F are <u>analytically</u> different from a_{EFT} and r_{EFT} .

Numerical comparison

Application to the $\pi\pi$ - $K\overline{K}$ system with $f_0(980)$ for quantitative comparison

EFT parameters a_{11}, a_{12}, a_{22} corresponding to Ref.[6]

$$a_{11} = 0.53$$
 [fm], $a_{12} = 0.24$ [fm], $a_{22} = 0.15$ [fm]

$$a_F = -0.98 - 0.98i$$
[fm] $r_F = -1.05 - 0.08i$ [fm]
 $a_{EFT} = -0.45 - 0.98i$ [fm] $r_{EFT} = -0.09 - 0.10i$ [fm]

a_F and r_F are <u>quantitatively</u> different from a_{EFT} and r_{EFT} in the physical system.

[6] R.R. Akhametshin et al., Phys. Lett B 462, 380 (1999)

Pole position

We compare the pole potion of f^{EFT} with that of f^{F} .

The EFT scattering amplitude

$$f^{EFT}(E) = \frac{\left\{\frac{1}{a_{12}^2} - \left(\frac{1}{a_{22}} + ip(E)\right)\left(\frac{1}{a_{11}} + ik(E)\right)\right\}^{-1} \begin{pmatrix} \left(\frac{1}{a_{22}} + ip(E)\right) & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & \left(\frac{1}{a_{11}} + ik(E)\right) \end{pmatrix}}{= 0}$$

 a_{11}, a_{12}, a_{22} ; EFT parameters

2

The Flatté scattering amplitude

$$f^{F}(E) = \left\{ 2E_{BW} - E - ig_{1}^{2}k(E) - ig_{2}^{2}p(E) \right\}^{-1} \begin{pmatrix} g_{1}^{2} & g_{1}g_{2} \\ g_{1}g_{2} & g_{2}^{2} \end{pmatrix} \quad \begin{array}{l} E_{BW}, g_{1}^{2}, g_{2}^{2}; \text{ Flatté parameters} \\ k(E); \text{ channel 1 momentum} \\ p(E); \text{ channel 2 momentum} \end{array}$$

m

Pole position

 $\pi\pi$ - $K\overline{K}$ system with $f_0(980)$

50

The Flatté pole position is different from the EFT pole position. [6] R.R. /

[6] R.R. Akhametshin et al., Phys. Lett B 462, 380 (1999)

k^Fp

Summary

14

We discuss determination of scattering length and effective range.

Flatté : a_F, r_F EFT : a_{EFT}, r_{EFT}

- We express a_F, r_F by the parameters in the EFT amplitude, and compare them with a_{EFT}, r_{EFT} .
- We compare a_F , r_F with a_{EFT} , r_{EFT} quantitatively in the $\pi\pi$ - $K\overline{K}$ system with $f_0(980)$.

 \square a_F and r_F are different from a_{EFT} and r_{EFT} analytically, and also in the physical system.

• We compare the pole potion of f^{EFT} with that of f^F .

 \square The Flatté pole k_p^F is different from the EFT pole k_p^{EFT} .

We must use the scattering amplitude derived from EFT satisfying the optical theorem, in order to obtain the correct scattering length and effective range.

Pole position

Using parameters Ref.[6]

Flatté pole potision $k_n^{F(1)} = -98.7 - 98.7i$ [MeV] $k_n^{F(2)} = -139 - 54.7i$ [MeV] EFT pole potision $k_p^{EFT(1)} = -161 - 76.2i \,[\text{MeV}]$ $k_n^{EFT(2)} = -170 - 81.4i$ [MeV] $k_n^{EFT(full)} = -174 - 77.5i$ [MeV]

[6] R.R. Akhametshin et al., Phys. Lett B 462, 380 (1999)