Weak decay of heavy hadrons based on the dynamical supersymmetry of the anti s quark and the ud diquark ELPH 研究会 C033「ハドロン分光に迫る反応と構造の物理」

H. Akiyama, ^AT. Amano, D. Jido, ^BS. Leupold

Tokyo Tech, ^ATokyo Metropolitan Univ., ^BUppsala Univ.

December 7, 2022

H. Akiyama, T. Amano, D. Jido, S. Leupold, In preparation

H. Akiyama

ELPH 研究会 C033

Topics

Introduction

- Symmetry for \bar{s} quark and ud diquark
- 2 Weak decay of hadrons
- 3 Weak decay of hadrons with V(3) symmetry

Result

- Decay rate
- Decay parameter
- Effective coupling constants
- Difference with heavy guark symmetry

Summery

Outlook

Back up

Symmetry for \bar{s} quark and ud diquark

- Diquark: Composite particle of two quarks.
- Investigate the properties of diquarks with symmetry.
- We focus on "Good diquark" (spin-0, color $ar{\mathbf{3}}$)

- T. Amano, D. Jido, Prog. Theor. Phys. 2019, 093D02 (2019).
- H. Miyazawa, Phys. Rev. 170, 1586 (1968)

H. Akiyama

3/19

Heavy I	nadron	masses			
		Hadron		Mass[MeV]	
spin	0	1	$\frac{1}{2}$		
$\hat{\Psi}b$	(\bar{B}^0_s)	\bar{B}_s^{*0}	$\bar{\Lambda_b^0}$)	(5367, 5415,5620)	Symmetry breaking is
	$\bar{s}b$	$\bar{s}b$	udb		${\sim}5\%$
$\hat{\Psi}c$	(D_s^+)	D_s^{*+}	$\Lambda_c^+)$	(1968, 2112,2286)	Symmetry breaking is
	$\bar{s}c$	$\bar{s}c$	udc		${\sim}15\%$
$\hat{H} \hat{\Psi} s$	$(\eta_s^0$	ϕ^0	Λ^0)	(?, 1019,1116)	
	$\bar{s}s$	$\bar{s}s$	uds		

 $\ensuremath{\mathscr{X}}$ Strictly, $\hat{\Psi}\Psi$ multiplet

$$\begin{aligned} |\eta_s\rangle &\equiv |s\bar{s}_{J^P=0^-}\rangle = -\sqrt{\frac{2}{3}} \,|\eta\rangle + \sqrt{\frac{1}{3}} \,|\eta'\rangle \\ |\eta\rangle &= \frac{1}{\sqrt{6}}(|u\bar{u}\rangle + |d\bar{d}\rangle) - \frac{2}{\sqrt{6}} \,|s\bar{s}\rangle \,, \quad |\eta'\rangle = \frac{1}{\sqrt{3}}(|u\bar{u}\rangle + |d\bar{d}\rangle + |s\bar{s}\rangle) \end{aligned}$$

T. Amano, D. Jido, Prog. Theor. Phys. 2019, 093D02 (2019).

H. Akiyama

ELPH 研究会 C033

- We would like to investigate the symmetry of the wavefunction.
- \Rightarrow Investigate weak decay of hadrons.

Weak decay of bottom hadrons

- Nonleptonic decay: $\hat{\Psi}b \rightarrow P^-\hat{\Psi}c$, $P^- = \pi^-, K^-, \rho^-, \cdots$
- Semileptonic decay: $\hat{\Psi}b \rightarrow \ell^- \bar{\nu_\ell} \hat{\Psi} c$
- Ex. Pionic decay of bottom hadrons
 - $\Lambda_b \to \pi^- \Lambda_c^+ (J^P = \frac{1}{2}^+ \text{ baryon} \to J^P = \frac{1}{2}^+ \text{ baryon})$
 - $\bar{B}^0_s \rightarrow \pi^- D^+_s \ \left(J^P = 0^- \ \mathrm{meson} \rightarrow J^P = 0^- \ \mathrm{meson} \right)$
 - $\bar{B}^0_s \rightarrow \pi^- D^{*+}_s \left(J^P = 0^- \text{ meson } \rightarrow J^P = 1^- \text{ meson}\right)$

Weak decay of hadrons with V(3) symmetry

- Amplitude(Phenomenology): $\mathcal{M} = \mathcal{M}^{\mu}_{h} \mathcal{M}_{P\mu}$
- $\mathcal{M}_{P\mu}$: Weak current ($\partial_{\mu}\phi_{\pi}$:pionic decay, ρ_{μ} : ρ mesonic decay)
- $\mathcal{M}_{h}^{\mu} = \bar{u}_{c}^{(\alpha)} \gamma^{\mu} (A + B \gamma_{5}) u_{b}^{(\beta)}$: Hadronic current
- Decay rate: $\Gamma = \frac{(2\pi)^4}{2M_{\hat{\Psi}b}} \int d\Phi_n \sum_{\text{spin}} (\mathcal{M}_h^{\mu\dagger} \mathcal{M}_h^{\nu}) (\mathcal{M}_{P\mu}^{\dagger} \mathcal{M}_{P\nu})$

Assumption

- $\hat{\Psi}$ is a spectator $\rightarrow \mathcal{M}^{\mu}_{h}$ is given by the quark transition alone.
- V(3) symmetry $\rightarrow A, B$ is common for each decay mode

T. Amano, D. Jido, S. Leupold, Phys. RevD.105.L051504(2022)

ELPH 研究会 C033

6/19

General decay rate

•
$$\Gamma_{\bar{B}^0_s \to D^+_s P^-} = K_{Ap} |A|^2$$

• $\Gamma_{\bar{B}^0_s \to D^{*+}_s P^-} = K_{Av} |A|^2 + K_{Bv} |B|^2 + K_{ABv} |A| |B| \cos(\arg A - \arg B)$

• $\Gamma_{\Lambda_b^0 \to \Lambda_c^+ P^-} = K_{Ab} |A|^2 + K_{Bb} |B|^2 + K_{ABb} |A| |B| \cos(\arg A - \arg B)$

 ${\boldsymbol K}$ depend on only hadron masses.

 $K_{AB} \neq 0$ only for semileptonic decay with massive lepton.

For $K_{AB} = 0$

•
$$\Gamma_{\Lambda_b^0 \to \Lambda_c^+ P^-} = C_p \Gamma_{\bar{B}_s^0 \to D_s^+ P^-} + C_v \Gamma_{\bar{B}_s^0 \to D_s^{*+} P^-}$$
: Corrected sum rule

•
$$\Gamma_{\bar{B}^0_s \to D^+_s P^-}, \Gamma_{\bar{B}^0_s \to D^+_s P^-} \xrightarrow{\text{verify}} |A|, |B|$$

General decay rate

•
$$\Gamma_{\bar{B}^0_s \to D^+_s P^-} = K_{Ap} |A|^2$$

• $\Gamma_{\bar{B}^0_s \to D^{*+}_s P^-} = K_{Av} |A|^2 + K_{Bv} |B|^2 + K_{ABv} |A| |B| \cos(\arg A - \arg B)$
• $\Gamma_{\Lambda^0_b \to \Lambda^+_c P^-} = K_{Ab} |A|^2 + K_{Bb} |B|^2 + K_{ABb} |A| |B| \cos(\arg A - \arg B)$
K depend on only hadron masses.

 $K_{AB} \neq 0$ only for semileptonic decay with massive lepton.

For $K_{AB} \neq 0$ i.e. semileptonic decay with massive lepton

•
$$A, B$$
 are real under CP symmetry. $\Rightarrow \cos(\arg A - \arg B) = \pm 1$

•
$$\Gamma_{\bar{B}^0_s \to D^+_s P^-}, \Gamma_{\bar{B}^0_s \to D^+_s P^-} \xrightarrow{\text{verify}} |A|, |B| \xrightarrow{\text{verify}} \Gamma_{\Lambda^0_b \to \Lambda^+_c P^-}$$

- We can extract the absolute value of effective coupling constants |A|, |B| from meson decay rates.
- We can calculate the baryon decay asymmetry parameter α using |A|, |B|.

$$\alpha = \cos(\arg A - \arg B)\alpha \left(\left| \frac{B}{A} \right| \right)$$

• We set A, B are real.*

^{*}A.I. Vainshtein, V. I. Zakharov, M.A. Shifman, ZhEFT, 72 (1977).

Result(Decay rate)

Table: Decay rate of charm hadrons[s⁻¹]. For muonic decay, the first and second value is $\cos(\arg A - \arg B) = -1, +1$.

	Baryon decay rate	
	Exp.	Calc.
$\hat{\Psi}b \rightarrow \hat{\Psi}c\pi^- \times 10^9 [s^{-1}]$	3.33±0.27	$3.38^{+0.37}_{-0.31}$
$\hat{\Psi}c \rightarrow \hat{\Psi}s\pi^+ \times 10^{10} [\mathrm{s}^{-1}]$	$6.45{\pm}0.35$	$21.0{\pm}1.4$
$\hat{\Psi}c ightarrow \hat{\Psi}u \bar{K^0} imes 10^{10} [\mathrm{s}^{-1}]$	$7.89{\pm}0.04$	28.7±5.0
$\hat{\Psi}c \rightarrow \hat{\Psi}se^+\nu_e \times 10^{11} [\mathrm{s}^{-1}]$	$1.79 {\pm} 0.20$	$1.58{\pm}0.09$
$\hat{\Psi}c \to \hat{\Psi}s\mu^+\nu_\mu \times 10^{11} [\mathrm{s}^{-1}]$	$1.74{\pm}0.25$	$1.22{\pm}0.27, 1.67{\pm}0.31$

Table: Baryon decay asymmetry parameter. Values in brakets are theoretical. $\delta\equiv\cos(\arg A-\arg B)$.

	α	
	Exp.	Calc.
$\Lambda_c \to \Lambda \pi^+$	-0.84 ± 0.09	-0.851 ± 0.011
$\Lambda_c \to \Lambda e^+ \nu_e$	-0.86 ± 0.04	-0.784 ± 0.006
$\Lambda_c \to \Lambda \mu^+ \nu_\mu (\delta = -1)$	-0.86 ± 0.04	-0.857 ± 0.02
$\Lambda_c \to \Lambda \mu^+ \nu_\mu (\delta = +1)$	-0.86 ± 0.04	0.692 ± 0.003

Result(Effective coupling constants for semileptonic decay)

- In semileptonic decay, the hadronic current does not depend on the lepton generation, since there is no correction for strong interactions.
- |B| differs between electron and muon.

Table: The absolute values of effective coupling constans $[10^{-12} \text{MeV}^{-2}].\delta \equiv \cos(\arg A - \arg B)$

	A	B
$\hat{\Psi}c \rightarrow \hat{\Psi}se^+\nu_e$	$7.44{\pm}0.12$	7.52±0.28
$\hat{\Psi}c \rightarrow \hat{\Psi}s\mu^+\nu_\mu(\delta=-1)$	$7.88{\pm}0.75$	$4.64{\pm}0.97$
$\hat{\Psi}c \rightarrow \hat{\Psi}s\mu^+\nu_\mu(\delta=+1)$	$7.88{\pm}0.75$	$10.0{\pm}1.0$

Difference with heavy quark symmetry

• If heavy quark symmetry holds, replacing $\hat{\Psi}$ with \bar{u}, \bar{d} as a spectator is not expected to change the amplitude.

 \rightarrow Determin $|A|,|B|{\rm from}$ the decay of each meson, and calculate the decay rate of the baryon

H. Akiyama

Difference with heavy quark symmetry

- If heavy quark symmetry holds, replacing $\hat{\Psi}$ with \bar{u}, \bar{d} as a spectator is not expected to change the amplitude.
- V(3) symmetry is better than heavy quark symmetry

Table: The absolute values of effective coupling constans $[10^{-12} \mbox{MeV}^{-2}]$ and decay rates of bottom hadrons, for pionic decay $[10^9 \mbox{s}^{-1}]$, kaonic decay $[10^8 \mbox{s}^{-1}]$.

	Decay rate	A	B
$\Lambda_b^0 \to \Lambda_c^+ \pi^-$	3.33±0.27(Exp.)		
$(\bar{s})\bar{B}^0_s \to D^{+(*)}_s \pi^-$	$3.38\substack{+0.37\\-0.31}$	$2.54{\pm}0.06$	$2.10^{+0.28}_{-0.22}$
$(\bar{u})B^- \rightarrow D^{0(*)}\pi^-$	$6.53{\pm}0.13$	$3.10{\pm}0.04$	$3.37{\pm}0.05$
$(\bar{d})B^0 \to D^{+(*)}\pi^-$	$3.75{\pm}0.11$	$2.36{\pm}0.04$	$2.55{\pm}0.06$
$\Lambda^0_b \to \Lambda^+_c K^-$	2.42±0.19(Exp.)		
$(\bar{s})\bar{B}^0_s \to D^{+(*)}_s K^-$	$2.47^{+0.30}_{-0.25}$	$7.04{\pm}0.19$	$5.64\substack{+0.855\\-0.684}$
$(\bar{u})B^- \to D^{0(*)}K^-$	$2.57{\pm}0.11$	$9.11 {\pm} 0.20$	$1.05{\pm}0.14$
$(\bar{d})B^0 \to D^{+(*)}K^-$	$2.98{\pm}0.12$	$6.79{\pm}0.13$	$7.22{\pm}0.26$

Summery

Model

- Consider the symmetry for \bar{s} quark and ud diquark.
- Investigate the weak decay of heavy hadrons: $\hat{\Psi}b \rightarrow P\hat{\Psi}c_{r}\hat{\Psi}c \rightarrow P\hat{\Psi}s$.
- $\hat{\Psi}$ is a spectator.

Result

- Reproduces experimental values of baryon decay rate and decay paremeter well.
- Cannot reproduced well the baryon decay rate of charm hadrons for pionic decay. \rightarrow Final state interaction? diquark picture is bad in Λ ?
- Amplitude of semileptonic decay depends on the lepton generation. $\rightarrow q^2$ dependence?
- V(3) symmetry is better than heavy quark symmetry.

Outlook

Next

- Calculate the decay rate in micoscopic way.
- Verify the origin of symmetry breaking for pionic decay of charm hadron.
- Investigate the q^2 dependence of amplitude.

Afterward

- Investigate the symmetry of the wavefunction in production process $(e^+e^- \rightarrow \hat{\Psi}b\overline{\hat{\Psi}b})$
- V(3) symmetry in heavy ion collision production.
 - Restore the chiral symmetry in high temperature system.
 - Investigate the origin of diquark mass

Back up slide

Result(Effective coupling constants for semileptonic decay)

- In semileptonic decay, the hadronic current does not depend on the lepton generation, since there is no correction for strong interactions.
- |B| differs between electron and muon. $\rightarrow q^2 = (p_\ell + p_\nu)^2$ dependence of A, B?

Figure: q^2 dependence of phase space. Peak positions are $\overline{12} = 5.83 \times 10^{-4}, 0.117$ in electronic decay and muonic decay, H. Akiyama ELPH 研究会 C033

Result(Effective coupling constants for semileptonic decay)

- In semileptonic decay, the hadronic current does not depend on the lepton generation, since there is no correction for strong interactions.
- |B| differs between electron and muon. $\rightarrow q^2 = (p_\ell + p_\nu)^2$ dependence of A, B?

Table: The absolute values of effective coupling constans $[10^{-12} \text{MeV}^{-2}].\delta \equiv \cos(\arg A - \arg B)$

	A	B
$\hat{\Psi}c \rightarrow \hat{\Psi}se^+\nu_e$	$7.44{\pm}0.12$	$7.52{\pm}0.28$
$\hat{\Psi}c \rightarrow \hat{\Psi}s\mu^+\nu_\mu(\delta=-1)$	$7.88{\pm}0.75$	$4.64{\pm}0.97$
$\hat{\Psi}c \rightarrow \hat{\Psi}s\mu^+\nu_\mu(\delta=+1)$	$7.88{\pm}0.75$	$10.0{\pm}1.0$