Study for the relation of chiral symmetry breaking and $U(1)_A$ anomaly in instanton liquid model

7th December 2022@ELPH, Tohoku University Nuclear Hadron Physics Group, Tokyo Institute of Technology Yamato Suda and Daisuke Jido

Contents

- > Introduction
- > Previous research
- > Our goals
- Model & Method
- Results & Discussion
- Summary & Outlook

Introduction

Motivation

Isoscalar, scalar $\sigma/f_0(500)$ state is one of our most interesting objects in hadron physics.

- Mass generation of hadrons
- A fluctuation of chiral order parameter (quark condensate)

Introduction

- **Properties of** $\sigma/f_0(500)$
 - Small mass and large width[1]: $M_{\sigma} = (400-500) i(200-350)$ MeV
 - Various candidates :
 - Chiral partner of π
 - $\overline{q}q$ composite state
 - $\pi\pi$ scattering

- (cf. $M_{\rho(770)} = (754 764) i(72 74)$ MeV)
- Glueball
- $\bar{q}\bar{q}qq$ tetra quark state
- Their mixture
- Chiral symmetry of QCD \Rightarrow Existence of chiral partner of π

Recently some results are obtained along this context.

Meson masses in NJL model with anomaly [2]

 G_S : (Dimensionless) 4-quark coupling $\Rightarrow \overline{q}q$ -attraction G_D : (Dimensionless) anomaly coupling \Rightarrow anomaly strength

1. Regime I :
$$m_{\sigma} > 800 \text{ MeV}$$

Regime II : $m_{\sigma} < 800 \text{ MeV}$

 \Rightarrow Next slide : definition of each regime

 \Rightarrow Quantitative evaluation

χ SSB regime in NJL model with anomaly [2]

- - - - - Weak \overline{q} -q attraction & Weak anomaly

 $G_{S} : \text{(Dimensionless) 4-quark coupling} \Rightarrow \bar{q}q\text{-attraction}$ $G_{D} : \text{(Dimensionless) anomaly coupling} \Rightarrow \text{anomaly strength}$ $\chi \text{SSB} : \underline{\mathbf{S}} \text{pontaneous } \underline{\mathbf{B}} \text{reaking of } \underline{\mathbf{Chi}} \text{ral } \underline{\mathbf{S}} \text{ymmetry}$

Regime I : Normal χ SSB

 $\equiv G_S > 1 \text{ and } \langle \overline{q}q \rangle \neq 0 \text{ in vacuum}$ (Strong \overline{q} -q attraction)

Regime II : Anomaly driven χ SSB

 $\equiv G_S < 1 \text{ but } \langle \overline{q}q \rangle \neq 0 \text{ in vacuum}$ (Weak \overline{q} -q attraction & Strong anomaly)

2. Even if \overline{q} -q attraction is weak,

 χ SSB would be achieved by anomaly. 6/16

Correspondence in the chiral effective model

Our goals

Q. How is a previous result interpreted in term of *instanton* vacuum?

- Anomaly driven regime : $m_{\sigma} < 800 \text{ MeV}$
- Anomaly driven χ SSB

To examine that, we compute the following in *interacting instanton liquid model* [3].

- $\langle \bar{q}q \rangle$ -dependence of free energy density (corresponding to the effective potential)
- Its derivative (slope and curvature) at origin and vacuum

Model : Interacting instanton liquid model [3]

Interacting instanton liquid model (IILM) is given

Instanton interaction by the Euclidean partition function Z [3]: **Fermionic interaction** $Z = \sum_{N_{+},N_{-}} \frac{1}{N_{+}!N_{-}!} \int \prod_{i}^{N_{+}+N_{-}} [d\Omega_{i}d(\rho_{i})] \exp(-S_{\text{int}}) \prod_{i}^{N_{f}} \det(\hat{D}+m_{f})$ **Instanton distribution function** Measure of the path integral $N = N_+ + N_-$: Number of instantons and anti-instantons $d\Omega_i = d\rho_i dU_i d^4 z_i$: Degree of freedom of *i*-th instanton, size, color orientation and position : Semiclassical instanton distribution function [4] $d(\rho) = \frac{4.6 \exp(-1.86N_c)}{\pi^2 (N_c - 1)! (N_c - 2)!} \rho^{-5} \left(\frac{8\pi^2}{a^2(\rho)}\right)^{2N_c} \exp\left(-\frac{8\pi^2}{a^2(\rho)}\right)$ [4] G. 't Hooft, Phys. Rev. D 14 (1976) 3432.

 $S_{\rm int}$: Instanton interaction [5,6]

 $d(\rho)$

[5] E. Shuryak and J. Verbaarschot, Phys. Rev. D 52 (1995) 295. [6] A.V. Yung, Nucl. Phys. **B 297** (1987) 47.

Simulation detail and observables

• Simulation : Monte Carlo method according to the weight function $p(\{\Omega_i\}) \sim e^{-S_{eff}}$

$$S_{\text{eff}} = -\sum_{i=1}^{N} \log[d(\rho_i)] + S_{\text{int}} + \sum_{f=1}^{N_f} \log\left[\det(\hat{D} + m_f)\right]$$

- Algorithm : Hybrid Monte Carlo (HMC)
- Gauge & Fermion : color SU(3) & Quenched (no quark in config.)
- Box volume $: (1.35 \text{ fm})^4 \le V_4 \le (5.50 \text{ fm})^4$
- Num. of config. $: N_{\text{conf}} = 5000$
- Num. of $I + \bar{I}$ (fixed) : N = 16 + 16
- Observables
 - Free energy density : $F = -\frac{1}{V_A} \log Z$
 - Quark condensate :

$$\langle \bar{q}q \rangle = \frac{\int \mathcal{D}\Omega \,\bar{q}(x)q(x)e^{-S_{\rm eff}}}{\int \mathcal{D}\Omega e^{-S_{\rm eff}}}$$

10/16

Result : F vs instanton density in IILM

Result : F vs $\langle \bar{q}q \rangle$ in IILM

12/16

Correspondence in the chiral effective model

Result : Curvature & slope at origin in IILM

Result : IILM & NJL model Preliminary

•	Slope	and	curvature	in	each	model
---	-------	-----	-----------	----	------	-------

* : Input value

Model		IILM		NJL					
$m_q \; [{ m MeV}]$		27.0*	108.0^{*}	5.0*			15.0^{*}		
NJL's parameter				(a)	(b)	(c)	(a)	(b)	(c)
$\partial V/\partial \left< ar q q \right> ~[{ m MeV}]$	Origin	293	1182	5.00	5.00	5.00	15.00	15.00	15.00
	Vacuum	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
$10^{6} \cdot \partial^{2} V / \partial \left\langle \bar{q}q \right\rangle^{2} \left[\mathrm{MeV}^{-2} \right]$	Origin	-	-	-0.281	0.911	0.726	-0.306	1.06	0.726
	Vacuum	3.79	10.4	7.47	4.07	2.36	11.4	8.07	5.14

(a): $(G_S, G_D) = (1.01, -0.70),$ (b): $(G_S, G_D) = (0.96, -0.70),$ (c): $(G_S, G_D) = (0.96, 0)$

- In IILM, curvature at origin cannot be evaluated due to lack of the data (-).
- In IILM, slope at origin seems to be large compared to current quark masses.
- In IILM, curvature at vacuum is same order as NJL results, but we should be carefully.

Summary & Outlook

- Summary
- The chiral effective models show that $\sigma/f_0(500)$ and the effective potential are indicators of compromise between χ SSB and the U(1)_A anomaly [Kono *et al.*, 2021].
- We compute $\langle \bar{q}q \rangle$ -dependence of free energy density in IILM.
- We also compute $\langle \bar{q}q \rangle$ -dependence of effective potential in NJL model with anomaly.
- Curvature and slope of $\langle \bar{q}q \rangle$ -dependence of free energy density and effective potential in each model would give us some information.
- Outlook
- Identify regime of χ SSB in IILM and anomaly contribution by using curvature, slope and direct physical quantities (e.g. m_{σ}).
- Compute m_{σ} in IILM
- Compute unquench IILM